Spaces:
Running
on
Zero
Running
on
Zero
File size: 38,280 Bytes
cf40b67 a6e4f9f cf40b67 a6e4f9f cf40b67 a6e4f9f b8c63a2 3d63694 b8c63a2 3d63694 b8c63a2 a6e4f9f b8c63a2 3d63694 b8c63a2 3d63694 b8c63a2 3d63694 b8c63a2 3d63694 b8c63a2 3d63694 b8c63a2 a6e4f9f b8c63a2 3d63694 b8c63a2 a6e4f9f b8c63a2 3d63694 d64ad42 b8c63a2 3d63694 b8c63a2 3d63694 a6e4f9f 3d63694 b8c63a2 3d63694 b8c63a2 3d63694 b8c63a2 3d63694 b8c63a2 3d63694 b8c63a2 3d63694 b8c63a2 60c475d b8c63a2 3d63694 b8c63a2 3d63694 a6e4f9f 3d63694 a6e4f9f 3d63694 a6e4f9f 3d63694 a6e4f9f 3d63694 a6e4f9f 3d63694 d64ad42 a6e4f9f cf40b67 3d63694 a6e4f9f cf40b67 3d63694 cf40b67 a6e4f9f 3d63694 b8c63a2 a6e4f9f cf40b67 3d63694 a6e4f9f b8c63a2 3d63694 a6e4f9f 3d63694 a6e4f9f 3d63694 a6e4f9f 3d63694 a6e4f9f 3d63694 a6e4f9f 3d63694 a6e4f9f 3d63694 d64ad42 3d63694 b8c63a2 3d63694 b8c63a2 3d63694 b8c63a2 3d63694 a6e4f9f 3d63694 a6e4f9f 3d63694 a6e4f9f 3d63694 cf40b67 3d63694 cf40b67 3d63694 a6e4f9f 3d63694 a6e4f9f cf40b67 b8c63a2 3d63694 cf40b67 3d63694 a6e4f9f cf40b67 3d63694 cf40b67 3d63694 a6e4f9f cf40b67 3d63694 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
from duckduckgo_search import DDGS
import time
import torch
from datetime import datetime
import os
import subprocess
import numpy as np
from typing import List, Dict, Tuple, Any
from functools import lru_cache
import asyncio
import threading
from concurrent.futures import ThreadPoolExecutor
import warnings
# Suppress specific warnings if needed (optional)
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
# --- Configuration ---
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
MAX_SEARCH_RESULTS = 5
TTS_SAMPLE_RATE = 24000
MAX_TTS_CHARS = 1000 # Reduced for faster testing, adjust as needed
GPU_DURATION = 60 # Increased duration for longer tasks like TTS
MAX_NEW_TOKENS = 256
TEMPERATURE = 0.7
TOP_P = 0.95
# --- Initialization ---
# Initialize model and tokenizer with better error handling
try:
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token
print("Loading model...")
# Determine device map based on CUDA availability
device_map = "auto" if torch.cuda.is_available() else {"": "cpu"}
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Use float32 on CPU
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map=device_map,
# offload_folder="offload", # Only use offload if really needed and configured
low_cpu_mem_usage=True,
torch_dtype=torch_dtype
)
print(f"Model loaded on device map: {model.hf_device_map}")
print("Model and tokenizer loaded successfully")
except Exception as e:
print(f"Error initializing model: {str(e)}")
# If running in Spaces, maybe try loading to CPU as fallback?
# For now, just raise the error.
raise
# --- TTS Setup ---
VOICE_CHOICES = {
'πΊπΈ Female (Default)': 'af',
'πΊπΈ Bella': 'af_bella',
'πΊπΈ Sarah': 'af_sarah',
'πΊπΈ Nicole': 'af_nicole'
}
TTS_ENABLED = False
TTS_MODEL = None
VOICEPACKS = {} # Cache voice packs
KOKORO_PATH = 'Kokoro-82M'
# Initialize Kokoro TTS in a separate thread to avoid blocking startup
def setup_tts():
global TTS_ENABLED, TTS_MODEL, VOICEPACKS
try:
# Check if Kokoro already exists
if not os.path.exists(KOKORO_PATH):
print("Cloning Kokoro-82M repository...")
# Install git-lfs if not present (might need sudo/apt)
try:
subprocess.run(['git', 'lfs', 'install'], check=True, capture_output=True)
except (FileNotFoundError, subprocess.CalledProcessError) as lfs_err:
print(f"Warning: git-lfs might not be installed or failed: {lfs_err}. Cloning might be slow or incomplete.")
clone_cmd = ['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M']
result = subprocess.run(clone_cmd, check=True, capture_output=True, text=True)
print("Kokoro cloned successfully.")
print(result.stdout)
# Optionally pull LFS files if needed (sometimes clone doesn't get them all)
# subprocess.run(['git', 'lfs', 'pull'], cwd=KOKORO_PATH, check=True)
else:
print("Kokoro-82M directory already exists.")
# Install espeak (essential for phonemization)
print("Attempting to install espeak-ng or espeak...")
try:
# Try installing espeak-ng first (often preferred)
subprocess.run(['sudo', 'apt-get', 'update'], check=True, capture_output=True)
subprocess.run(['sudo', 'apt-get', 'install', '-y', 'espeak-ng'], check=True, capture_output=True)
print("espeak-ng installed successfully.")
except (FileNotFoundError, subprocess.CalledProcessError):
print("espeak-ng installation failed, trying espeak...")
try:
# Fallback to espeak
subprocess.run(['sudo', 'apt-get', 'install', '-y', 'espeak'], check=True, capture_output=True)
print("espeak installed successfully.")
except (FileNotFoundError, subprocess.CalledProcessError) as espeak_err:
print(f"Warning: Could not install espeak-ng or espeak: {espeak_err}. TTS functionality will be disabled.")
return # Cannot proceed without espeak
# Set up Kokoro TTS
if os.path.exists(KOKORO_PATH):
import sys
if KOKORO_PATH not in sys.path:
sys.path.append(KOKORO_PATH)
try:
from models import build_model
from kokoro import generate as generate_tts_internal # Avoid name clash
# Make these functions accessible globally if needed, but better to keep scoped
globals()['build_model'] = build_model
globals()['generate_tts_internal'] = generate_tts_internal
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading TTS model onto device: {device}")
# Ensure model path is correct
model_file = os.path.join(KOKORO_PATH, 'kokoro-v0_19.pth')
if not os.path.exists(model_file):
print(f"Error: TTS model file not found at {model_file}")
# Attempt to pull LFS files again
try:
print("Attempting git lfs pull...")
subprocess.run(['git', 'lfs', 'pull'], cwd=KOKORO_PATH, check=True, capture_output=True)
if not os.path.exists(model_file):
print(f"Error: TTS model file STILL not found at {model_file} after lfs pull.")
return
except Exception as lfs_pull_err:
print(f"Error during git lfs pull: {lfs_pull_err}")
return
TTS_MODEL = build_model(model_file, device)
# Preload default voice
default_voice_id = 'af'
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{default_voice_id}.pt')
if os.path.exists(voice_file_path):
print(f"Loading default voice: {default_voice_id}")
VOICEPACKS[default_voice_id] = torch.load(voice_file_path,
map_location=device) # Removed weights_only=True
else:
print(f"Warning: Default voice file {voice_file_path} not found.")
# Preload other common voices to reduce latency
for voice_name, voice_id in VOICE_CHOICES.items():
if voice_id != default_voice_id: # Avoid reloading default
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt')
if os.path.exists(voice_file_path):
try:
print(f"Preloading voice: {voice_id}")
VOICEPACKS[voice_id] = torch.load(voice_file_path,
map_location=device) # Removed weights_only=True
except Exception as e:
print(f"Warning: Could not preload voice {voice_id}: {str(e)}")
else:
print(f"Info: Voice file {voice_file_path} for '{voice_name}' not found, will skip preloading.")
TTS_ENABLED = True
print("TTS setup completed successfully")
except ImportError as ie:
print(f"Error importing Kokoro modules: {ie}. Check if Kokoro-82M is correctly cloned and in sys.path.")
except Exception as model_load_err:
print(f"Error loading TTS model or voices: {model_load_err}")
else:
print(f"Warning: {KOKORO_PATH} directory not found after clone attempt. TTS disabled.")
except subprocess.CalledProcessError as spe:
print(f"Warning: A subprocess command failed during TTS setup: {spe}")
print(f"Command: {' '.join(spe.cmd)}")
print(f"Stderr: {spe.stderr}")
print("TTS may be disabled.")
except Exception as e:
print(f"Warning: An unexpected error occurred during TTS setup: {str(e)}")
TTS_ENABLED = False
# Start TTS setup in a separate thread
print("Starting TTS setup in background thread...")
tts_thread = threading.Thread(target=setup_tts, daemon=True)
tts_thread.start()
# --- Search and Generation Functions ---
@lru_cache(maxsize=128)
def get_web_results(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, str]]:
"""Get web search results using DuckDuckGo with caching for improved performance"""
print(f"Performing web search for: '{query}'")
try:
with DDGS() as ddgs:
# Using safe='off' potentially gives more results but use cautiously
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate'))
print(f"Found {len(results)} results.")
formatted_results = []
for result in results:
formatted_results.append({
"title": result.get("title", "No Title"),
"snippet": result.get("body", "No Snippet Available"),
"url": result.get("href", "#"),
# Attempt to extract date - DDGS doesn't reliably provide it
# "date": result.get("published", "") # Placeholder
})
return formatted_results
except Exception as e:
print(f"Error in web search: {e}")
return []
def format_prompt(query: str, context: List[Dict[str, str]]) -> str:
"""Format the prompt with web context"""
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for i, res in enumerate(context)]) # No need for index here
prompt = f"""You are a helpful AI assistant. Your task is to answer the user's query based *only* on the provided web search context.
Do not add information not present in the context.
Cite the sources used in your answer using bracket notation, e.g., [Source Title]. Use the titles from the context.
If the context does not contain relevant information to answer the query, state that clearly.
Current Time: {current_time}
Web Context:
{context_lines if context else "No web context available."}
User Query: {query}
Answer:"""
# print(f"Formatted Prompt:\n{prompt}") # Debugging
return prompt
def format_sources(web_results: List[Dict[str, str]]) -> str:
"""Format sources with more details"""
if not web_results:
return "<div class='no-sources'>No sources found for the query.</div>"
sources_html = "<div class='sources-container'>"
for i, res in enumerate(web_results, 1):
title = res.get("title", "Source")
url = res.get("url", "#")
# date = f"<span class='source-date'>{res['date']}</span>" if res.get('date') else "" # DDG date is unreliable
snippet = res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else "")
sources_html += f"""
<div class='source-item'>
<div class='source-number'>[{i}]</div>
<div class='source-content'>
<a href="{url}" target="_blank" class='source-title' title="{url}">{title}</a>
<div class='source-snippet'>{snippet}</div>
</div>
</div>
"""
sources_html += "</div>"
return sources_html
# Use a ThreadPoolExecutor for potentially blocking I/O or CPU-bound tasks
# Keep GPU tasks separate if possible, or ensure thread safety if sharing GPU resources
executor = ThreadPoolExecutor(max_workers=4)
@spaces.GPU(duration=GPU_DURATION, cancellable=True)
async def generate_answer(prompt: str) -> str:
"""Generate answer using the DeepSeek model with optimized settings (Async Wrapper)"""
print("Generating answer...")
try:
inputs = tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=1024, # Increased context length
return_attention_mask=True
).to(model.device)
# Ensure generation runs on the correct device
with torch.no_grad(), torch.cuda.amp.autocast(enabled=torch.cuda.is_available() and torch_dtype == torch.float16):
outputs = await asyncio.to_thread( # Use asyncio.to_thread for potentially blocking calls
model.generate,
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=MAX_NEW_TOKENS,
temperature=TEMPERATURE,
top_p=TOP_P,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
early_stopping=True,
num_return_sequences=1
)
# Decode output
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the generated part after "Answer:"
answer_part = full_output.split("Answer:")[-1].strip()
print(f"Generated Answer Raw Length: {len(outputs[0])}, Decoded Answer Part Length: {len(answer_part)}")
if not answer_part: # Handle cases where split might fail or answer is empty
print("Warning: Could not extract answer after 'Answer:'. Returning full output.")
return full_output # Fallback
return answer_part
except Exception as e:
print(f"Error during answer generation: {e}")
# You might want to return a specific error message here
return f"Error generating answer: {str(e)}"
# Ensure this function runs potentially long tasks in a thread using the executor
# @spaces.GPU(duration=GPU_DURATION, cancellable=True) # Keep GPU decorator if TTS uses GPU heavily
async def generate_speech(text: str, voice_id: str = 'af') -> Tuple[int, np.ndarray] | None:
"""Generate speech from text using Kokoro TTS model (Async Wrapper)."""
global TTS_MODEL, TTS_ENABLED, VOICEPACKS
print(f"Attempting to generate speech for text (length {len(text)}) with voice '{voice_id}'")
if not TTS_ENABLED or TTS_MODEL is None:
print("TTS is not enabled or model not loaded.")
return None
if 'generate_tts_internal' not in globals():
print("TTS generation function 'generate_tts_internal' not found.")
return None
try:
device = TTS_MODEL.device # Get device from the loaded TTS model
# Load voicepack if needed (handle potential errors)
if voice_id not in VOICEPACKS:
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt')
if os.path.exists(voice_file_path):
print(f"Loading voice '{voice_id}' on demand...")
try:
VOICEPACKS[voice_id] = await asyncio.to_thread(
torch.load, voice_file_path, map_location=device # Removed weights_only=True
)
except Exception as load_err:
print(f"Error loading voicepack {voice_id}: {load_err}. Falling back to default 'af'.")
voice_id = 'af' # Fallback to default
# Ensure default is loaded if fallback occurs
if 'af' not in VOICEPACKS:
default_voice_file = os.path.join(KOKORO_PATH, 'voices', 'af.pt')
if os.path.exists(default_voice_file):
VOICEPACKS['af'] = await asyncio.to_thread(
torch.load, default_voice_file, map_location=device
)
else:
print("Default voice 'af' also not found. Cannot generate audio.")
return None
else:
print(f"Voicepack {voice_id}.pt not found. Falling back to default 'af'.")
voice_id = 'af' # Fallback to default
if 'af' not in VOICEPACKS: # Check again if default is needed now
default_voice_file = os.path.join(KOKORO_PATH, 'voices', 'af.pt')
if os.path.exists(default_voice_file):
VOICEPACKS['af'] = await asyncio.to_thread(
torch.load, default_voice_file, map_location=device
)
else:
print("Default voice 'af' also not found. Cannot generate audio.")
return None
if voice_id not in VOICEPACKS:
print(f"Error: Voice '{voice_id}' could not be loaded.")
return None
# Clean the text (simple cleaning)
clean_text = ' '.join(text.split()) # Remove extra whitespace
clean_text = clean_text.replace('*', '').replace('[', '').replace(']', '') # Remove markdown chars
# Ensure text isn't empty
if not clean_text.strip():
print("Warning: Empty text provided for TTS.")
return None
# Limit text length
if len(clean_text) > MAX_TTS_CHARS:
print(f"Warning: Text too long ({len(clean_text)} chars), truncating to {MAX_TTS_CHARS}.")
# Simple truncation, could be smarter (split by sentence)
clean_text = clean_text[:MAX_TTS_CHARS]
last_space = clean_text.rfind(' ')
if last_space != -1:
clean_text = clean_text[:last_space] + "..." # Truncate at last space
# Run the potentially blocking TTS generation in a thread
print(f"Generating audio for: '{clean_text[:100]}...'")
gen_func = globals()['generate_tts_internal']
loop = asyncio.get_event_loop()
audio_data, _ = await loop.run_in_executor(
executor, # Use the thread pool executor
gen_func,
TTS_MODEL,
clean_text,
VOICEPACKS[voice_id],
'a' # Language code (assuming 'a' is appropriate)
)
if isinstance(audio_data, torch.Tensor):
# Move tensor to CPU before converting to numpy if it's not already
audio_np = audio_data.cpu().numpy()
elif isinstance(audio_data, np.ndarray):
audio_np = audio_data
else:
print("Warning: Unexpected audio data type from TTS.")
return None
print(f"Audio generated successfully, shape: {audio_np.shape}")
return (TTS_SAMPLE_RATE, audio_np)
except Exception as e:
import traceback
print(f"Error generating speech: {str(e)}")
print(traceback.format_exc()) # Print full traceback for debugging
return None
# Helper to get voice ID from display name
def get_voice_id(voice_display_name: str) -> str:
"""Maps the user-friendly voice name to the internal voice ID."""
return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af' if not found
# --- Main Processing Logic (Async) ---
async def process_query_async(query: str, history: List[List[str]], selected_voice_display_name: str):
"""Asynchronously process user query: search -> generate answer -> generate speech"""
if not query:
yield (
"Please enter a query.", "", "Search", history, None
)
return
if history is None: history = []
current_history = history + [[query, "*Searching...*"]]
# 1. Initial state: Searching
yield (
"*Searching & Thinking...*",
"<div class='searching'>Searching the web...</div>",
gr.Button(value="Searching...", interactive=False), # Disable button
current_history,
None
)
# 2. Perform Web Search (non-blocking)
loop = asyncio.get_event_loop()
web_results = await loop.run_in_executor(executor, get_web_results, query)
sources_html = format_sources(web_results)
# Update state: Analyzing results
current_history[-1][1] = "*Analyzing search results...*"
yield (
"*Analyzing search results...*",
sources_html,
gr.Button(value="Generating...", interactive=False),
current_history,
None
)
# 3. Generate Answer (non-blocking, potentially on GPU)
prompt = format_prompt(query, web_results)
final_answer = await generate_answer(prompt) # Already async
# Update state: Answer generated
current_history[-1][1] = final_answer
yield (
final_answer,
sources_html,
gr.Button(value="Audio...", interactive=False),
current_history,
None
)
# 4. Generate Speech (non-blocking, potentially on GPU)
audio = None
tts_message = ""
if not tts_thread.is_alive() and not TTS_ENABLED:
tts_message = "\n\n*(TTS setup failed or is disabled)*"
elif tts_thread.is_alive():
tts_message = "\n\n*(TTS is still initializing, audio may be delayed)*"
elif TTS_ENABLED:
voice_id = get_voice_id(selected_voice_display_name)
audio = await generate_speech(final_answer, voice_id) # Already async
if audio is None:
tts_message = f"\n\n*(Audio generation failed for voice '{voice_id}')*"
# 5. Final state: Show everything
yield (
final_answer + tts_message,
sources_html,
gr.Button(value="Search", interactive=True), # Re-enable button
current_history,
audio
)
# --- Gradio Interface ---
css = """
/* ... [Your existing CSS remains unchanged] ... */
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
#header h3 { color: #a8a9ab; }
.search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; }
.search-box { padding: 0; margin-bottom: 1rem; }
.search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; } /* Style textbox specifically */
.search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px;} /* Style dropdown */
.search-box .gradio-button { border-radius: 0 8px 8px 0 !important; } /* Style button */
.search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 42px !important; }
.search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; }
.search-box input[type="text"]::placeholder { color: #9ca3af !important; }
.search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 44px !important; }
.search-box button:hover { background: #1d4ed8 !important; }
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
.answer-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; color: #1f2937; margin-bottom: 1.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); }
.answer-box p { color: #374151; line-height: 1.7; }
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
.sources-container { margin-top: 0; }
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; }
.source-item:last-child { border-bottom: none; }
/* .source-item:hover { background-color: #f9fafb; } */
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
.source-content { flex: 1; }
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; }
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
.source-date { color: #6b7280; font-size: 0.8em; margin-left: 8px; }
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
.chat-history { max-height: 400px; overflow-y: auto; padding: 1rem; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; margin-top: 1rem; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
.chat-history::-webkit-scrollbar { width: 6px; }
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
.examples-container .gradio-examples { gap: 8px !important; } /* Target examples component */
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 0 !important; font-size: 0.9em !important; padding: 6px 12px !important; }
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
.markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; }
.markdown-content h1 { font-size: 1.6em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em; }
.markdown-content h2 { font-size: 1.4em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em;}
.markdown-content h3 { font-size: 1.2em !important; }
.markdown-content a { color: #2563eb !important; text-decoration: none !important; transition: all 0.2s; }
.markdown-content a:hover { color: #1d4ed8 !important; text-decoration: underline !important; }
.markdown-content code { background: #f3f4f6 !important; padding: 2px 6px !important; border-radius: 4px !important; font-family: monospace !important; color: #4b5563; font-size: 0.9em; }
.markdown-content pre { background: #f3f4f6 !important; padding: 12px !important; border-radius: 8px !important; overflow-x: auto !important; border: 1px solid #e5e7eb;}
.markdown-content pre code { background: transparent !important; padding: 0 !important; border: none !important; font-size: 0.9em;}
.markdown-content blockquote { border-left: 4px solid #d1d5db !important; padding-left: 1em !important; margin-left: 0 !important; color: #6b7280 !important; }
.markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; }
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
.accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; }
.accordion > .label-wrap { padding: 10px 15px !important; } /* Style accordion header */
.voice-selector { margin: 0; padding: 0; }
.voice-selector div[data-testid="dropdown"] { /* Target the specific dropdown container */ height: 44px !important; }
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
.voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; }
.audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;}
.audio-player audio { width: 100% !important; }
.searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; }
.searching { background: #eff6ff; color: #3b82f6; border-color: #bfdbfe; }
.error { background: #fef2f2; color: #ef4444; border-color: #fecaca; }
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; } /* Add span for animation */
.dark .gradio-container { background-color: #111827 !important; }
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
.dark #header h3 { color: #9ca3af; }
.dark .search-container { background: #1f2937; border-color: #374151; }
.dark .search-box input[type="text"] { background: #374151 !important; border-color: #4b5563 !important; color: #e5e7eb !important; }
.dark .search-box input[type="text"]:focus { border-color: #3b82f6 !important; background: #4b5563 !important; box-shadow: 0 0 0 2px rgba(59, 130, 246, 0.3) !important; }
.dark .search-box input[type="text"]::placeholder { color: #9ca3af !important; }
.dark .search-box button { background: #3b82f6 !important; }
.dark .search-box button:hover { background: #2563eb !important; }
.dark .search-box button:disabled { background: #4b5563 !important; }
.dark .answer-box { background: #1f2937; border-color: #374151; color: #e5e7eb; }
.dark .answer-box p { color: #d1d5db; }
.dark .answer-box code { background: #374151; color: #9ca3af; }
.dark .sources-box { background: #1f2937; border-color: #374151; }
.dark .sources-box h3 { color: #f9fafb; }
.dark .source-item { border-bottom-color: #374151; }
.dark .source-item:hover { background-color: #374151; }
.dark .source-number { color: #9ca3af; }
.dark .source-title { color: #60a5fa; }
.dark .source-title:hover { color: #93c5fd; }
.dark .source-snippet { color: #d1d5db; }
.dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; }
.dark .chat-history::-webkit-scrollbar-track { background: #374151; }
.dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; }
.dark .examples-container { background: #374151; border-color: #4b5563; }
.dark .examples-container button { background: #1f2937 !important; border-color: #4b5563 !important; color: #d1d5db !important; }
.dark .examples-container button:hover { background: #4b5563 !important; border-color: #6b7280 !important; }
.dark .markdown-content { color: #d1d5db !important; }
.dark .markdown-content h1, .dark .markdown-content h2, .dark .markdown-content h3 { color: #f9fafb !important; border-bottom-color: #4b5563; }
.dark .markdown-content a { color: #60a5fa !important; }
.dark .markdown-content a:hover { color: #93c5fd !important; }
.dark .markdown-content code { background: #374151 !important; color: #9ca3af; }
.dark .markdown-content pre { background: #374151 !important; border-color: #4b5563;}
.dark .markdown-content pre code { background: transparent !important; }
.dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; }
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
.dark .markdown-content th { background: #374151 !important; }
.dark .accordion { background: #374151 !important; border-color: #4b5563 !important; }
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
.dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; }
.dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; }
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
"""
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
chat_history = gr.State([])
with gr.Column(): # Main container
with gr.Column(elem_id="header"):
gr.Markdown("# π AI Search Assistant")
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
with gr.Column(elem_classes="search-container"):
with gr.Row(elem_classes="search-box", equal_height=True):
search_input = gr.Textbox(
label="",
placeholder="Ask anything...",
scale=5,
container=False, # Important for direct styling
elem_classes="gradio-textbox"
)
voice_select = gr.Dropdown(
choices=list(VOICE_CHOICES.keys()),
value=list(VOICE_CHOICES.keys())[0],
label="", # No label needed here
scale=2,
container=False, # Important
elem_classes="voice-selector gradio-dropdown"
)
search_btn = gr.Button(
"Search",
variant="primary",
scale=1,
elem_classes="gradio-button"
)
with gr.Row(elem_classes="results-container", equal_height=False):
with gr.Column(scale=3): # Wider column for answer + history
with gr.Column(elem_classes="answer-box"):
answer_output = gr.Markdown(elem_classes="markdown-content", value="*Your answer will appear here...*")
# Audio player below the answer
audio_output = gr.Audio(label="Voice Response", elem_classes="audio-player", type="numpy") # Expect numpy array
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
chat_history_display = gr.Chatbot(elem_classes="chat-history", label="History", height=300)
with gr.Column(scale=2): # Narrower column for sources
with gr.Column(elem_classes="sources-box"):
gr.Markdown("### Sources")
sources_output = gr.HTML(value="<div class='no-sources'>Sources will appear here after searching.</div>")
with gr.Row(elem_classes="examples-container"):
gr.Examples(
examples=[
"Latest news about renewable energy",
"Explain the concept of Large Language Models (LLMs)",
"What are the symptoms and prevention tips for the flu?",
"Compare Python and JavaScript for web development"
],
inputs=search_input,
label="Try these examples:",
elem_classes="gradio-examples" # Add class for potential styling
)
# --- Event Handling ---
# Use the async function for processing
async def handle_interaction(query, history, voice_display_name):
"""Wrapper to handle the async generator from process_query_async"""
try:
async for update in process_query_async(query, history, voice_display_name):
# Ensure the button state is updated correctly
ans_out, src_out, btn_state, hist_display, aud_out = update
yield ans_out, src_out, btn_state, hist_display, aud_out
except Exception as e:
print(f"Error in handle_interaction: {e}")
import traceback
traceback.print_exc()
error_message = f"An unexpected error occurred: {e}"
# Provide a final error state update
yield (
error_message,
"<div class='error'>Error processing request.</div>",
gr.Button(value="Search", interactive=True), # Re-enable button on error
history + [[query, f"*Error: {error_message}*"]],
None
)
# Corrected event listeners: Pass the voice_select component directly
search_btn.click(
fn=handle_interaction,
inputs=[search_input, chat_history, voice_select], # Pass voice_select component
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
)
search_input.submit(
fn=handle_interaction,
inputs=[search_input, chat_history, voice_select], # Pass voice_select component
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
)
if __name__ == "__main__":
# Launch the app
demo.queue(max_size=20).launch(debug=True, share=True) # Enable debug for more logs |