File size: 4,888 Bytes
57517e4
 
 
 
 
 
 
 
 
0781dee
57517e4
0781dee
 
1770619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0781dee
 
57517e4
0781dee
 
 
 
 
 
 
57517e4
0781dee
 
57517e4
0781dee
 
 
 
57517e4
0781dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f40541e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import gradio as gr
import numpy as np
import json
import joblib
import tensorflow as tf
import pandas as pd
from joblib import load
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import os
import sklearn

# Display library versions
print(f"Gradio version: {gr.__version__}")
print(f"NumPy version: {np.__version__}")
print(f"Scikit-learn version: {sklearn.__version__}")
print(f"Joblib version: {joblib.__version__}")
print(f"TensorFlow version: {tf.__version__}")
print(f"Pandas version: {pd.__version__}")

# Directory paths for the saved models
script_dir = os.path.dirname(os.path.abspath(__file__))
scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json')
rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib')
mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras')
meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib')
image_path = os.path.join(script_dir, 'toolkit', 'car.png')

# Load the scaler and models
try:
    # Load the scaler
    with open(scaler_path, 'r') as f:
        scaler_params = json.load(f)
    scaler_X = MinMaxScaler()
    scaler_X.scale_ = np.array(scaler_params["scale_"])
    scaler_X.min_ = np.array(scaler_params["min_"])
    scaler_X.data_min_ = np.array(scaler_params["data_min_"])
    scaler_X.data_max_ = np.array(scaler_params["data_max_"])
    scaler_X.data_range_ = np.array(scaler_params["data_range_"])
    scaler_X.n_features_in_ = scaler_params["n_features_in_"]
    scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"])

    # Load the models
    loaded_rf_model = load(rf_model_path)
    print("Random Forest model loaded successfully.")
    loaded_mlp_model = load_model(mlp_model_path)
    print("MLP model loaded successfully.")
    loaded_meta_model = load(meta_model_path)
    print("Meta model loaded successfully.")
except Exception as e:
    print(f"Error loading models or scaler: {e}")

def predict_and_plot(velocity, temperature, precipitation, humidity):
    try:
        # Prepare the example data
        example_data = pd.DataFrame({
            'Velocity(mph)': [velocity],
            'Temperature': [temperature],
            'Precipitation': [precipitation],
            'Humidity': [humidity]
        })

        # Scale the example data
        example_data_scaled = scaler_X.transform(example_data)

        # Function to predict contamination levels
        def predict_contamination(example_data_scaled):
            # Predict using MLP model
            mlp_predictions_contamination, mlp_predictions_gradients = loaded_mlp_model.predict(example_data_scaled)

            # Predict using RF model
            rf_predictions = loaded_rf_model.predict(example_data_scaled)

            # Combine predictions for meta model
            combined_features = np.concatenate([np.concatenate([mlp_predictions_contamination, mlp_predictions_gradients], axis=1), rf_predictions], axis=1)

            # Predict using meta model
            meta_predictions = loaded_meta_model.predict(combined_features)

            return meta_predictions[:, :6]  # Assuming the first 6 columns are contamination predictions

        # Predict contamination levels for the single example
        contamination_levels = predict_contamination(example_data_scaled)

        # Simulate contamination levels at multiple time intervals
        time_intervals = np.arange(0, 601, 60)  # Simulating time intervals from 0 to 600 seconds

        # Generate simulated contamination levels (linear interpolation between predicted values)
        simulated_contamination_levels = np.array([
            np.linspace(contamination_levels[0][i], contamination_levels[0][i] * 2, len(time_intervals))
            for i in range(contamination_levels.shape[1])
        ]).T

        # Function to calculate cleaning time using linear interpolation
        def calculate_cleaning_time(time_intervals, contamination_levels, threshold=0.4):
            cleaning_times = []
            for i in range(contamination_levels.shape[1]):
                levels = contamination_levels[:, i]
                for j in range(1, len(levels)):
                    if levels[j-1] <= threshold <= levels[j]:
                        # Linear interpolation
                        t1, t2 = time_intervals[j-1], time_intervals[j]
                        c1, c2 = levels[j-1], levels[j]
                        cleaning_time = t1 + (threshold - c1) * (t2 - t1) / (c2 - c1)
                        cleaning_times.append(cleaning_time)
                        break
            return cleaning_times

        # Calculate cleaning times for all 6 lidars
        cleaning_times = calculate_cleaning_time(time_intervals, simulated_contamination_levels)

        # Lidar names
        lidar_names = ['F/L', 'F/R', 'Left', '