Update app.py
Browse files
app.py
CHANGED
@@ -7,82 +7,98 @@ import pandas as pd
|
|
7 |
from joblib import load
|
8 |
from tensorflow.keras.models import load_model
|
9 |
from sklearn.preprocessing import MinMaxScaler
|
|
|
10 |
import os
|
11 |
-
import sklearn
|
12 |
-
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
print(f"Scikit-learn version: {sklearn.__version__}")
|
17 |
-
print(f"Joblib version: {joblib.__version__}")
|
18 |
-
print(f"TensorFlow version: {tf.__version__}")
|
19 |
-
print(f"Pandas version: {pd.__version__}")
|
20 |
-
|
21 |
-
# Directory paths for the saved models
|
22 |
-
script_dir = os.path.dirname(os.path.abspath(__file__))
|
23 |
-
scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json')
|
24 |
-
rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib')
|
25 |
-
mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras')
|
26 |
-
meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib')
|
27 |
-
image_path = os.path.join(script_dir, 'toolkit', 'car.png')
|
28 |
-
|
29 |
-
# Load the scaler and models
|
30 |
-
try:
|
31 |
-
# Load the scaler
|
32 |
-
with open(scaler_path, 'r') as f:
|
33 |
-
scaler_params = json.load(f)
|
34 |
-
scaler_X = MinMaxScaler()
|
35 |
-
scaler_X.scale_ = np.array(scaler_params["scale_"])
|
36 |
-
scaler_X.min_ = np.array(scaler_params["min_"])
|
37 |
-
scaler_X.data_min_ = np.array(scaler_params["data_min_"])
|
38 |
-
scaler_X.data_max_ = np.array(scaler_params["data_max_"])
|
39 |
-
scaler_X.data_range_ = np.array(scaler_params["data_range_"])
|
40 |
-
scaler_X.n_features_in_ = scaler_params["n_features_in_"]
|
41 |
-
scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"])
|
42 |
-
|
43 |
-
# Load the models
|
44 |
-
loaded_rf_model = load(rf_model_path)
|
45 |
-
print("Random Forest model loaded successfully.")
|
46 |
-
loaded_mlp_model = load_model(mlp_model_path)
|
47 |
-
print("MLP model loaded successfully.")
|
48 |
-
loaded_meta_model = load(meta_model_path)
|
49 |
-
print("Meta model loaded successfully.")
|
50 |
-
except Exception as e:
|
51 |
-
print(f"Error loading models or scaler: {e}")
|
52 |
-
|
53 |
-
def predict_new_values(new_input_data):
|
54 |
try:
|
55 |
-
#
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
#
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
83 |
except Exception as e:
|
84 |
print(f"Error in Gradio interface: {e}")
|
85 |
-
return ["Error"] *
|
86 |
|
87 |
inputs = [
|
88 |
gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"),
|
@@ -100,18 +116,18 @@ contamination_outputs = [
|
|
100 |
gr.Textbox(label="Rear Contamination")
|
101 |
]
|
102 |
|
103 |
-
|
104 |
-
gr.Textbox(label="Front Left
|
105 |
-
gr.Textbox(label="Front Right
|
106 |
-
gr.Textbox(label="Left
|
107 |
-
gr.Textbox(label="Right
|
108 |
-
gr.Textbox(label="Roof
|
109 |
-
gr.Textbox(label="Rear
|
110 |
]
|
111 |
|
112 |
with gr.Blocks() as demo:
|
113 |
-
gr.Markdown("<h1 style='text-align: center;'>Environmental Factor-Based Contamination &
|
114 |
-
gr.Markdown("This application predicts the contamination levels
|
115 |
|
116 |
with gr.Row():
|
117 |
with gr.Column():
|
@@ -124,7 +140,11 @@ with gr.Blocks() as demo:
|
|
124 |
with gr.Column(scale=1, min_width=0):
|
125 |
gr.Image(image_path) # Ensure the image is centered
|
126 |
|
127 |
-
gr.Button(value="Submit", variant="primary").click(
|
|
|
|
|
|
|
|
|
128 |
gr.Button(value="Clear").click(fn=lambda: None)
|
129 |
|
130 |
with gr.Column():
|
@@ -133,8 +153,8 @@ with gr.Blocks() as demo:
|
|
133 |
out.render()
|
134 |
|
135 |
with gr.Column():
|
136 |
-
gr.Markdown("###
|
137 |
-
for out in
|
138 |
out.render()
|
139 |
|
140 |
demo.launch()
|
|
|
7 |
from joblib import load
|
8 |
from tensorflow.keras.models import load_model
|
9 |
from sklearn.preprocessing import MinMaxScaler
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
import os
|
12 |
+
import sklearn
|
13 |
+
|
14 |
+
# Assuming the previous setup and imports have been done
|
15 |
+
|
16 |
+
def predict_and_plot(velocity, temperature, precipitation, humidity):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
try:
|
18 |
+
# Prepare the example data
|
19 |
+
example_data = pd.DataFrame({
|
20 |
+
'Velocity(mph)': [velocity],
|
21 |
+
'Temperature': [temperature],
|
22 |
+
'Precipitation': [precipitation],
|
23 |
+
'Humidity': [humidity]
|
24 |
+
})
|
25 |
|
26 |
+
# Scale the example data
|
27 |
+
example_data_scaled = scaler_X.transform(example_data)
|
28 |
|
29 |
+
# Function to predict contamination levels
|
30 |
+
def predict_contamination(example_data_scaled):
|
31 |
+
# Predict using MLP model
|
32 |
+
mlp_predictions_contamination, mlp_predictions_gradients = loaded_mlp_model.predict(example_data_scaled)
|
33 |
|
34 |
+
# Predict using RF model
|
35 |
+
rf_predictions = loaded_rf_model.predict(example_data_scaled)
|
36 |
+
|
37 |
+
# Combine predictions for meta model
|
38 |
+
combined_features = np.concatenate([np.concatenate([mlp_predictions_contamination, mlp_predictions_gradients], axis=1), rf_predictions], axis=1)
|
39 |
+
|
40 |
+
# Predict using meta model
|
41 |
+
meta_predictions = loaded_meta_model.predict(combined_features)
|
42 |
+
|
43 |
+
return meta_predictions[:, :6] # Assuming the first 6 columns are contamination predictions
|
44 |
+
|
45 |
+
# Predict contamination levels for the single example
|
46 |
+
contamination_levels = predict_contamination(example_data_scaled)
|
47 |
+
|
48 |
+
# Simulate contamination levels at multiple time intervals
|
49 |
+
time_intervals = np.arange(0, 601, 60) # Simulating time intervals from 0 to 600 seconds
|
50 |
+
|
51 |
+
# Generate simulated contamination levels (linear interpolation between predicted values)
|
52 |
+
simulated_contamination_levels = np.array([
|
53 |
+
np.linspace(contamination_levels[0][i], contamination_levels[0][i] * 2, len(time_intervals))
|
54 |
+
for i in range(contamination_levels.shape[1])
|
55 |
+
]).T
|
56 |
+
|
57 |
+
# Function to calculate cleaning time using linear interpolation
|
58 |
+
def calculate_cleaning_time(time_intervals, contamination_levels, threshold=0.4):
|
59 |
+
cleaning_times = []
|
60 |
+
for i in range(contamination_levels.shape[1]):
|
61 |
+
levels = contamination_levels[:, i]
|
62 |
+
for j in range(1, len(levels)):
|
63 |
+
if levels[j-1] <= threshold <= levels[j]:
|
64 |
+
# Linear interpolation
|
65 |
+
t1, t2 = time_intervals[j-1], time_intervals[j]
|
66 |
+
c1, c2 = levels[j-1], levels[j]
|
67 |
+
cleaning_time = t1 + (threshold - c1) * (t2 - t1) / (c2 - c1)
|
68 |
+
cleaning_times.append(cleaning_time)
|
69 |
+
break
|
70 |
+
return cleaning_times
|
71 |
+
|
72 |
+
# Calculate cleaning times for all 6 lidars
|
73 |
+
cleaning_times = calculate_cleaning_time(time_intervals, simulated_contamination_levels)
|
74 |
+
|
75 |
+
# Lidar names
|
76 |
+
lidar_names = ['F/L', 'F/R', 'Left', 'Right', 'Roof', 'Rear']
|
77 |
+
|
78 |
+
# Plot the graph
|
79 |
+
plt.figure(figsize=(12, 8))
|
80 |
+
|
81 |
+
for i in range(simulated_contamination_levels.shape[1]):
|
82 |
+
plt.plot(time_intervals, simulated_contamination_levels[:, i], label=f'{lidar_names[i]}')
|
83 |
+
plt.axhline(y=0.4, color='r', linestyle='--', label='Contamination Threshold' if i == 0 else "")
|
84 |
+
if i < len(cleaning_times):
|
85 |
+
plt.scatter(cleaning_times[i], 0.4, color='k') # Mark the cleaning time point
|
86 |
+
|
87 |
+
plt.title('Contamination Levels Over Time for Each Lidar')
|
88 |
+
plt.xlabel('Time (seconds)')
|
89 |
+
plt.ylabel('Contamination Level')
|
90 |
+
plt.legend()
|
91 |
+
plt.grid(True)
|
92 |
|
93 |
+
# Save the plot to a file
|
94 |
+
plt.savefig('plot.png')
|
95 |
+
|
96 |
+
# Return the plot and predictions
|
97 |
+
return plt, [f"{val * 100:.2f}%" for val in contamination_levels[0]], [f"{val:.2f}" for val in cleaning_times]
|
98 |
+
|
99 |
except Exception as e:
|
100 |
print(f"Error in Gradio interface: {e}")
|
101 |
+
return plt.figure(), ["Error"] * 6, ["Error"] * 6
|
102 |
|
103 |
inputs = [
|
104 |
gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"),
|
|
|
116 |
gr.Textbox(label="Rear Contamination")
|
117 |
]
|
118 |
|
119 |
+
cleaning_time_outputs = [
|
120 |
+
gr.Textbox(label="Front Left Cleaning Time"),
|
121 |
+
gr.Textbox(label="Front Right Cleaning Time"),
|
122 |
+
gr.Textbox(label="Left Cleaning Time"),
|
123 |
+
gr.Textbox(label="Right Cleaning Time"),
|
124 |
+
gr.Textbox(label="Roof Cleaning Time"),
|
125 |
+
gr.Textbox(label="Rear Cleaning Time")
|
126 |
]
|
127 |
|
128 |
with gr.Blocks() as demo:
|
129 |
+
gr.Markdown("<h1 style='text-align: center;'>Environmental Factor-Based Contamination & Cleaning Time Prediction</h1>")
|
130 |
+
gr.Markdown("This application predicts the contamination levels, corresponding gradients, and cleaning times for different parts of a car's LiDAR system based on environmental factors such as velocity, temperature, precipitation, and humidity.")
|
131 |
|
132 |
with gr.Row():
|
133 |
with gr.Column():
|
|
|
140 |
with gr.Column(scale=1, min_width=0):
|
141 |
gr.Image(image_path) # Ensure the image is centered
|
142 |
|
143 |
+
gr.Button(value="Submit", variant="primary").click(
|
144 |
+
fn=predict_and_plot,
|
145 |
+
inputs=inputs,
|
146 |
+
outputs=[gr.Plot(label="Contamination Levels Over Time")] + contamination_outputs + cleaning_time_outputs
|
147 |
+
)
|
148 |
gr.Button(value="Clear").click(fn=lambda: None)
|
149 |
|
150 |
with gr.Column():
|
|
|
153 |
out.render()
|
154 |
|
155 |
with gr.Column():
|
156 |
+
gr.Markdown("### Cleaning Time Predictions")
|
157 |
+
for out in cleaning_time_outputs:
|
158 |
out.render()
|
159 |
|
160 |
demo.launch()
|