Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import json
|
4 |
+
import joblib
|
5 |
+
import tensorflow as tf
|
6 |
+
import pandas as pd
|
7 |
+
from joblib import load
|
8 |
+
from tensorflow.keras.models import load_model
|
9 |
+
from sklearn.preprocessing import MinMaxScaler
|
10 |
+
import os
|
11 |
+
import sklearn # Import sklearn
|
12 |
+
|
13 |
+
# Display library versions
|
14 |
+
print(f"Gradio version: {gr.__version__}")
|
15 |
+
print(f"NumPy version: {np.__version__}")
|
16 |
+
print(f"Scikit-learn version: {sklearn.__version__}")
|
17 |
+
print(f"Joblib version: {joblib.__version__}")
|
18 |
+
print(f"TensorFlow version: {tf.__version__}")
|
19 |
+
print(f"Pandas version: {pd.__version__}")
|
20 |
+
|
21 |
+
# Directory paths for the saved models
|
22 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
23 |
+
scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json')
|
24 |
+
rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib')
|
25 |
+
mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras')
|
26 |
+
meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib')
|
27 |
+
image_path = os.path.join(script_dir, 'toolkit', 'car.png')
|
28 |
+
|
29 |
+
# Load the scaler and models
|
30 |
+
try:
|
31 |
+
# Load the scaler
|
32 |
+
with open(scaler_path, 'r') as f:
|
33 |
+
scaler_params = json.load(f)
|
34 |
+
scaler_X = MinMaxScaler()
|
35 |
+
scaler_X.scale_ = np.array(scaler_params["scale_"])
|
36 |
+
scaler_X.min_ = np.array(scaler_params["min_"])
|
37 |
+
scaler_X.data_min_ = np.array(scaler_params["data_min_"])
|
38 |
+
scaler_X.data_max_ = np.array(scaler_params["data_max_"])
|
39 |
+
scaler_X.data_range_ = np.array(scaler_params["data_range_"])
|
40 |
+
scaler_X.n_features_in_ = scaler_params["n_features_in_"]
|
41 |
+
scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"])
|
42 |
+
|
43 |
+
# Load the models
|
44 |
+
loaded_rf_model = load(rf_model_path)
|
45 |
+
print("Random Forest model loaded successfully.")
|
46 |
+
loaded_mlp_model = load_model(mlp_model_path)
|
47 |
+
print("MLP model loaded successfully.")
|
48 |
+
loaded_meta_model = load(meta_model_path)
|
49 |
+
print("Meta model loaded successfully.")
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error loading models or scaler: {e}")
|
52 |
+
|
53 |
+
def predict_new_values(new_input_data):
|
54 |
+
try:
|
55 |
+
# Ensure the new input data is in the correct format
|
56 |
+
print(f"Raw Input Data: {new_input_data}")
|
57 |
+
new_input_data = np.array(new_input_data).reshape(1, -1)
|
58 |
+
|
59 |
+
# Scale the new input data
|
60 |
+
new_input_scaled = scaler_X.transform(new_input_data)
|
61 |
+
print(f"Scaled Input Data: {new_input_scaled}")
|
62 |
+
|
63 |
+
# Make predictions with the MLP model
|
64 |
+
contamination_predictions, gradients_predictions = loaded_mlp_model.predict(new_input_scaled)
|
65 |
+
|
66 |
+
return contamination_predictions[0], gradients_predictions[0]
|
67 |
+
except Exception as e:
|
68 |
+
print(f"Error in prediction: {e}")
|
69 |
+
return (["Error"] * 6, ["Error"] * 6)
|
70 |
+
|
71 |
+
def gradio_interface(velocity, temperature, precipitation, humidity):
|
72 |
+
try:
|
73 |
+
input_data = [velocity, temperature, precipitation, humidity]
|
74 |
+
print(f"Input Data: {input_data}")
|
75 |
+
contamination_predictions, gradients_predictions = predict_new_values(input_data)
|
76 |
+
print(f"Contamination Predictions: {contamination_predictions}")
|
77 |
+
print(f"Gradients Predictions: {gradients_predictions}")
|
78 |
+
return (
|
79 |
+
[f"{val * 100:.2f}%" if val != "Error" else "Error" for val in contamination_predictions],
|
80 |
+
[f"{val:.2f}" if val != "Error" else "Error" for val in gradients_predictions]
|
81 |
+
)
|
82 |
+
except Exception as e:
|
83 |
+
print(f"Error in Gradio interface: {e}")
|
84 |
+
return (["Error"] * 6, ["Error"] * 6)
|
85 |
+
|
86 |
+
inputs = [
|
87 |
+
gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"),
|
88 |
+
gr.Slider(minimum=-2, maximum=30, value=0, step=0.5, label="Temperature (°C)"),
|
89 |
+
gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Precipitation (inch)"),
|
90 |
+
gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)")
|
91 |
+
]
|
92 |
+
|
93 |
+
contamination_outputs = [
|
94 |
+
gr.Textbox(label="Front Left Contamination"),
|
95 |
+
gr.Textbox(label="Front Right Contamination"),
|
96 |
+
gr.Textbox(label="Left Contamination"),
|
97 |
+
gr.Textbox(label="Right Contamination"),
|
98 |
+
gr.Textbox(label="Roof Contamination"),
|
99 |
+
gr.Textbox(label="Rear Contamination")
|
100 |
+
]
|
101 |
+
|
102 |
+
gradients_outputs = [
|
103 |
+
gr.Textbox(label="Front Left Gradient"),
|
104 |
+
gr.Textbox(label="Front Right Gradient"),
|
105 |
+
gr.Textbox(label="Left Gradient"),
|
106 |
+
gr.Textbox(label="Right Gradient"),
|
107 |
+
gr.Textbox(label="Roof Gradient"),
|
108 |
+
gr.Textbox(label="Rear Gradient")
|
109 |
+
]
|
110 |
+
|
111 |
+
with gr.Blocks() as demo:
|
112 |
+
gr.Markdown("<h1 style='text-align: center;'>Environmental Factor-Based Contamination & Gradient Prediction</h1>")
|
113 |
+
gr.Markdown("This application predicts the contamination levels and corresponding gradients for different parts of a car's LiDAR system based on environmental factors such as velocity, temperature, precipitation, and humidity.")
|
114 |
+
|
115 |
+
with gr.Row():
|
116 |
+
with gr.Column():
|
117 |
+
gr.Markdown("### Input Parameters")
|
118 |
+
for inp in inputs:
|
119 |
+
inp.render()
|
120 |
+
|
121 |
+
# Centered image display
|
122 |
+
with gr.Row():
|
123 |
+
with gr.Column(scale=1, min_width=0):
|
124 |
+
gr.Image(image_path) # Ensure the image is centered
|
125 |
+
|
126 |
+
gr.Button(value="Submit", variant="primary").click(fn=gradio_interface, inputs=inputs, outputs=contamination_outputs + gradients_outputs)
|
127 |
+
gr.Button(value="Clear").click(fn=lambda: None)
|
128 |
+
|
129 |
+
with gr.Column():
|
130 |
+
gr.Markdown("### Contamination Predictions")
|
131 |
+
for out in contamination_outputs:
|
132 |
+
out.render()
|
133 |
+
|
134 |
+
with gr.Column():
|
135 |
+
gr.Markdown("### Gradients Predictions")
|
136 |
+
for out in gradients_outputs:
|
137 |
+
out.render()
|
138 |
+
|
139 |
+
demo.launch()
|