saba000farahani commited on
Commit
57517e4
·
verified ·
1 Parent(s): 179b62b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +139 -0
app.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import json
4
+ import joblib
5
+ import tensorflow as tf
6
+ import pandas as pd
7
+ from joblib import load
8
+ from tensorflow.keras.models import load_model
9
+ from sklearn.preprocessing import MinMaxScaler
10
+ import os
11
+ import sklearn # Import sklearn
12
+
13
+ # Display library versions
14
+ print(f"Gradio version: {gr.__version__}")
15
+ print(f"NumPy version: {np.__version__}")
16
+ print(f"Scikit-learn version: {sklearn.__version__}")
17
+ print(f"Joblib version: {joblib.__version__}")
18
+ print(f"TensorFlow version: {tf.__version__}")
19
+ print(f"Pandas version: {pd.__version__}")
20
+
21
+ # Directory paths for the saved models
22
+ script_dir = os.path.dirname(os.path.abspath(__file__))
23
+ scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json')
24
+ rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib')
25
+ mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras')
26
+ meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib')
27
+ image_path = os.path.join(script_dir, 'toolkit', 'car.png')
28
+
29
+ # Load the scaler and models
30
+ try:
31
+ # Load the scaler
32
+ with open(scaler_path, 'r') as f:
33
+ scaler_params = json.load(f)
34
+ scaler_X = MinMaxScaler()
35
+ scaler_X.scale_ = np.array(scaler_params["scale_"])
36
+ scaler_X.min_ = np.array(scaler_params["min_"])
37
+ scaler_X.data_min_ = np.array(scaler_params["data_min_"])
38
+ scaler_X.data_max_ = np.array(scaler_params["data_max_"])
39
+ scaler_X.data_range_ = np.array(scaler_params["data_range_"])
40
+ scaler_X.n_features_in_ = scaler_params["n_features_in_"]
41
+ scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"])
42
+
43
+ # Load the models
44
+ loaded_rf_model = load(rf_model_path)
45
+ print("Random Forest model loaded successfully.")
46
+ loaded_mlp_model = load_model(mlp_model_path)
47
+ print("MLP model loaded successfully.")
48
+ loaded_meta_model = load(meta_model_path)
49
+ print("Meta model loaded successfully.")
50
+ except Exception as e:
51
+ print(f"Error loading models or scaler: {e}")
52
+
53
+ def predict_new_values(new_input_data):
54
+ try:
55
+ # Ensure the new input data is in the correct format
56
+ print(f"Raw Input Data: {new_input_data}")
57
+ new_input_data = np.array(new_input_data).reshape(1, -1)
58
+
59
+ # Scale the new input data
60
+ new_input_scaled = scaler_X.transform(new_input_data)
61
+ print(f"Scaled Input Data: {new_input_scaled}")
62
+
63
+ # Make predictions with the MLP model
64
+ contamination_predictions, gradients_predictions = loaded_mlp_model.predict(new_input_scaled)
65
+
66
+ return contamination_predictions[0], gradients_predictions[0]
67
+ except Exception as e:
68
+ print(f"Error in prediction: {e}")
69
+ return (["Error"] * 6, ["Error"] * 6)
70
+
71
+ def gradio_interface(velocity, temperature, precipitation, humidity):
72
+ try:
73
+ input_data = [velocity, temperature, precipitation, humidity]
74
+ print(f"Input Data: {input_data}")
75
+ contamination_predictions, gradients_predictions = predict_new_values(input_data)
76
+ print(f"Contamination Predictions: {contamination_predictions}")
77
+ print(f"Gradients Predictions: {gradients_predictions}")
78
+ return (
79
+ [f"{val * 100:.2f}%" if val != "Error" else "Error" for val in contamination_predictions],
80
+ [f"{val:.2f}" if val != "Error" else "Error" for val in gradients_predictions]
81
+ )
82
+ except Exception as e:
83
+ print(f"Error in Gradio interface: {e}")
84
+ return (["Error"] * 6, ["Error"] * 6)
85
+
86
+ inputs = [
87
+ gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"),
88
+ gr.Slider(minimum=-2, maximum=30, value=0, step=0.5, label="Temperature (°C)"),
89
+ gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Precipitation (inch)"),
90
+ gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)")
91
+ ]
92
+
93
+ contamination_outputs = [
94
+ gr.Textbox(label="Front Left Contamination"),
95
+ gr.Textbox(label="Front Right Contamination"),
96
+ gr.Textbox(label="Left Contamination"),
97
+ gr.Textbox(label="Right Contamination"),
98
+ gr.Textbox(label="Roof Contamination"),
99
+ gr.Textbox(label="Rear Contamination")
100
+ ]
101
+
102
+ gradients_outputs = [
103
+ gr.Textbox(label="Front Left Gradient"),
104
+ gr.Textbox(label="Front Right Gradient"),
105
+ gr.Textbox(label="Left Gradient"),
106
+ gr.Textbox(label="Right Gradient"),
107
+ gr.Textbox(label="Roof Gradient"),
108
+ gr.Textbox(label="Rear Gradient")
109
+ ]
110
+
111
+ with gr.Blocks() as demo:
112
+ gr.Markdown("<h1 style='text-align: center;'>Environmental Factor-Based Contamination & Gradient Prediction</h1>")
113
+ gr.Markdown("This application predicts the contamination levels and corresponding gradients for different parts of a car's LiDAR system based on environmental factors such as velocity, temperature, precipitation, and humidity.")
114
+
115
+ with gr.Row():
116
+ with gr.Column():
117
+ gr.Markdown("### Input Parameters")
118
+ for inp in inputs:
119
+ inp.render()
120
+
121
+ # Centered image display
122
+ with gr.Row():
123
+ with gr.Column(scale=1, min_width=0):
124
+ gr.Image(image_path) # Ensure the image is centered
125
+
126
+ gr.Button(value="Submit", variant="primary").click(fn=gradio_interface, inputs=inputs, outputs=contamination_outputs + gradients_outputs)
127
+ gr.Button(value="Clear").click(fn=lambda: None)
128
+
129
+ with gr.Column():
130
+ gr.Markdown("### Contamination Predictions")
131
+ for out in contamination_outputs:
132
+ out.render()
133
+
134
+ with gr.Column():
135
+ gr.Markdown("### Gradients Predictions")
136
+ for out in gradients_outputs:
137
+ out.render()
138
+
139
+ demo.launch()