File size: 8,329 Bytes
57517e4
 
 
 
 
 
 
 
 
0781dee
57517e4
0781dee
 
1770619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0781dee
9db3260
57517e4
0781dee
 
 
 
 
 
 
57517e4
0781dee
 
57517e4
e71bf6d
 
0781dee
 
57517e4
0781dee
 
 
 
 
 
 
 
 
e71bf6d
0781dee
e71bf6d
 
0781dee
9db3260
 
 
 
 
 
 
 
 
 
 
0781dee
 
 
 
 
9db3260
 
0781dee
 
f265442
09de96b
f265442
9db3260
f265442
09de96b
 
f265442
09de96b
 
 
 
 
f265442
9db3260
f265442
 
9db3260
 
f265442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e71bf6d
 
 
 
 
 
 
 
 
f265442
 
 
 
 
 
 
 
 
 
e71bf6d
 
f265442
e52de52
f265442
e52de52
f265442
 
 
1f019aa
baf0b61
 
9db3260
baf0b61
9db3260
baf0b61
 
f265442
e52de52
 
 
baf0b61
db63e0a
 
9cbdc62
 
 
db63e0a
 
9cbdc62
 
 
 
e52de52
9cbdc62
 
 
f265442
baf0b61
e52de52
 
db63e0a
9db3260
 
 
 
 
db63e0a
f265442
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
import numpy as np
import json
import joblib
import tensorflow as tf
import pandas as pd
from joblib import load
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import os
import sklearn

# Display library versions
print(f"Gradio version: {gr.__version__}")
print(f"NumPy version: {np.__version__}")
print(f"Scikit-learn version: {sklearn.__version__}")
print(f"Joblib version: {joblib.__version__}")
print(f"TensorFlow version: {tf.__version__}")
print(f"Pandas version: {pd.__version__}")

# Directory paths for the saved models
script_dir = os.path.dirname(os.path.abspath(__file__))
scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json')
rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib')
mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras')
meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib')
image_path = os.path.join(script_dir, 'toolkit', 'car.png')

# Load the scaler and models
try:
    # Load the scaler
    with open(scaler_path, 'r') as f:
        scaler_params = json.load(f)
    scaler_X = MinMaxScaler()
    scaler_X.scale_ = np.array(scaler_params["scale_"])
    scaler_X.min_ = np.array(scaler_params["min_"])
    scaler_X.data_min_ = np.array(scaler_params["data_min_"])
    scaler_X.data_max_ = np.array(scaler_params["data_max_"])
    scaler_X.data_range_ = np.array(scaler_params["data_range_"])
    scaler_X.n_features_in_ = scaler_params["n_features_in_"]
    scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"])

    # Load the models
    loaded_rf_model = load(rf_model_path)
    print("Random Forest model loaded successfully.")
    loaded_mlp_model = load_model(mlp_model_path)
    print("MLP model loaded successfully.")
    loaded_meta_model = load(meta_model_path)
    print("Meta model loaded successfully.")
except Exception as e:
    print(f"Error loading models or scaler: {e}")

def predict_contamination_gradients(velocity, temperature, precipitation, humidity):
    try:
        # Prepare the example data
        example_data = pd.DataFrame({
            'Velocity(mph)': [velocity],
            'Temperature': [temperature],
            'Precipitation': [precipitation],
            'Humidity': [humidity]
        })

        # Scale the example data
        example_data_scaled = scaler_X.transform(example_data)

        # Function to predict contamination levels and gradients
        def predict_contamination_and_gradients(example_data_scaled):
            # Predict using MLP model
            mlp_predictions_contamination, mlp_predictions_gradients = loaded_mlp_model.predict(example_data_scaled)

            # Predict using RF model
            rf_predictions = loaded_rf_model.predict(example_data_scaled)

            # Combine predictions for meta model
            combined_features = np.concatenate([np.concatenate([mlp_predictions_contamination, mlp_predictions_gradients], axis=1), rf_predictions], axis=1)

            # Predict using meta model
            meta_predictions = loaded_meta_model.predict(combined_features)

            return meta_predictions[:, :6], meta_predictions[:, 6:]  # Split predictions into contamination and gradients

        # Predict contamination levels and gradients for the single example
        contamination_levels, gradients = predict_contamination_and_gradients(example_data_scaled)

        return contamination_levels[0], gradients[0]

    except Exception as e:
        print(f"Error in Gradio interface: {e}")
        return ["Error"] * 12

def plot_contamination_over_time(velocity, temperature, precipitation, humidity):
    try:
        # Predict contamination levels first
        contamination_levels, _ = predict_contamination_gradients(velocity, temperature, precipitation, humidity)

        # Simulate contamination levels at multiple time intervals
        time_intervals = np.arange(0, 601, 60)  # Simulating time intervals from 0 to 600 seconds

        # Generate simulated contamination levels (linear interpolation between predicted values)
        simulated_contamination_levels = np.array([
            np.linspace(contamination_levels[i], contamination_levels[i] * 2, len(time_intervals))
            for i in range(len(contamination_levels))
        ]).T

        # Plot the graph
        fig, ax = plt.subplots(figsize=(12, 8))

        lidar_names = ['F/L', 'F/R', 'Left', 'Right', 'Roof', 'Rear']
        for i in range(simulated_contamination_levels.shape[1]):
            ax.plot(time_intervals, simulated_contamination_levels[:, i], label=f'{lidar_names[i]}')
            ax.axhline(y=0.4, color='r', linestyle='--', label='Contamination Threshold' if i == 0 else "")

        ax.set_title('Contamination Levels Over Time for Each Lidar')
        ax.set_xlabel('Time (seconds)')
        ax.set_ylabel('Contamination Level')
        ax.legend()
        ax.grid(True)

        return fig

    except Exception as e:
        print(f"Error in plotting: {e}")
        return plt.figure()

inputs = [
    gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"),
    gr.Slider(minimum=-2, maximum=30, value=0, step=0.5, label="Temperature (°C)"),
    gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Precipitation (inch)"),
    gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)")
]

contamination_outputs = [
    gr.Textbox(label="Front Left Contamination"),
    gr.Textbox(label="Front Right Contamination"),
    gr.Textbox(label="Left Contamination"),
    gr.Textbox(label="Right Contamination"),
    gr.Textbox(label="Roof Contamination"),
    gr.Textbox(label="Rear Contamination")
]

gradients_outputs = [
    gr.Textbox(label="Front Left Gradient"),
    gr.Textbox(label="Front Right Gradient"),
    gr.Textbox(label="Left Gradient"),
    gr.Textbox(label="Right Gradient"),
    gr.Textbox(label="Roof Gradient"),
    gr.Textbox(label="Rear Gradient")
]

cleaning_time_outputs = [
    gr.Textbox(label="Front Left Cleaning Time"),
    gr.Textbox(label="Front Right Cleaning Time"),
    gr.Textbox(label="Left Cleaning Time"),
    gr.Textbox(label="Right Cleaning Time"),
    gr.Textbox(label="Roof Cleaning Time"),
    gr.Textbox(label="Rear Cleaning Time")
]

with gr.Blocks() as demo:
    gr.Markdown("<h1 style='text-align: center;'>Environmental Factor-Based Contamination, Gradient, & Cleaning Time Prediction</h1>")
    gr.Markdown("This application predicts the contamination levels, gradients, and cleaning times for different parts of a car's LiDAR system based on environmental factors such as velocity, temperature, precipitation, and humidity.")
    
    # Top Section: Inputs and Car Image
    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("### Input Parameters")
            for inp in inputs:
                inp.render()
            # Submit and Clear Buttons under the inputs
            with gr.Row():
                gr.Button(value="Submit", variant="primary").click(
                    fn=predict_contamination_gradients, 
                    inputs=inputs, 
                    outputs=contamination_outputs + gradients_outputs + cleaning_time_outputs
                )
                gr.Button(value="Clear").click(fn=lambda: None)

        with gr.Column(scale=1):
            gr.Image(image_path)

    # Middle Section: Outputs (Three columns)
    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("### Contamination Predictions")
            for out in contamination_outputs:
                out.render()

        with gr.Column(scale=2):
            gr.Markdown("### Gradient Predictions")
            for out in gradients_outputs:
                out.render()

        with gr.Column(scale=2):
            gr.Markdown("### Cleaning Time Predictions")
            for out in cleaning_time_outputs:
                out.render()

    # Bottom Section: Graph at the very end
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Contamination Levels Over Time")
            gr.Plot(label="Contamination Levels Over Time").click(
                fn=plot_contamination_over_time, 
                inputs=inputs, 
                outputs="plot"
            )

demo.launch()