File size: 8,329 Bytes
57517e4 0781dee 57517e4 0781dee 1770619 0781dee 9db3260 57517e4 0781dee 57517e4 0781dee 57517e4 e71bf6d 0781dee 57517e4 0781dee e71bf6d 0781dee e71bf6d 0781dee 9db3260 0781dee 9db3260 0781dee f265442 09de96b f265442 9db3260 f265442 09de96b f265442 09de96b f265442 9db3260 f265442 9db3260 f265442 e71bf6d f265442 e71bf6d f265442 e52de52 f265442 e52de52 f265442 1f019aa baf0b61 9db3260 baf0b61 9db3260 baf0b61 f265442 e52de52 baf0b61 db63e0a 9cbdc62 db63e0a 9cbdc62 e52de52 9cbdc62 f265442 baf0b61 e52de52 db63e0a 9db3260 db63e0a f265442 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
import numpy as np
import json
import joblib
import tensorflow as tf
import pandas as pd
from joblib import load
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import os
import sklearn
# Display library versions
print(f"Gradio version: {gr.__version__}")
print(f"NumPy version: {np.__version__}")
print(f"Scikit-learn version: {sklearn.__version__}")
print(f"Joblib version: {joblib.__version__}")
print(f"TensorFlow version: {tf.__version__}")
print(f"Pandas version: {pd.__version__}")
# Directory paths for the saved models
script_dir = os.path.dirname(os.path.abspath(__file__))
scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json')
rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib')
mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras')
meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib')
image_path = os.path.join(script_dir, 'toolkit', 'car.png')
# Load the scaler and models
try:
# Load the scaler
with open(scaler_path, 'r') as f:
scaler_params = json.load(f)
scaler_X = MinMaxScaler()
scaler_X.scale_ = np.array(scaler_params["scale_"])
scaler_X.min_ = np.array(scaler_params["min_"])
scaler_X.data_min_ = np.array(scaler_params["data_min_"])
scaler_X.data_max_ = np.array(scaler_params["data_max_"])
scaler_X.data_range_ = np.array(scaler_params["data_range_"])
scaler_X.n_features_in_ = scaler_params["n_features_in_"]
scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"])
# Load the models
loaded_rf_model = load(rf_model_path)
print("Random Forest model loaded successfully.")
loaded_mlp_model = load_model(mlp_model_path)
print("MLP model loaded successfully.")
loaded_meta_model = load(meta_model_path)
print("Meta model loaded successfully.")
except Exception as e:
print(f"Error loading models or scaler: {e}")
def predict_contamination_gradients(velocity, temperature, precipitation, humidity):
try:
# Prepare the example data
example_data = pd.DataFrame({
'Velocity(mph)': [velocity],
'Temperature': [temperature],
'Precipitation': [precipitation],
'Humidity': [humidity]
})
# Scale the example data
example_data_scaled = scaler_X.transform(example_data)
# Function to predict contamination levels and gradients
def predict_contamination_and_gradients(example_data_scaled):
# Predict using MLP model
mlp_predictions_contamination, mlp_predictions_gradients = loaded_mlp_model.predict(example_data_scaled)
# Predict using RF model
rf_predictions = loaded_rf_model.predict(example_data_scaled)
# Combine predictions for meta model
combined_features = np.concatenate([np.concatenate([mlp_predictions_contamination, mlp_predictions_gradients], axis=1), rf_predictions], axis=1)
# Predict using meta model
meta_predictions = loaded_meta_model.predict(combined_features)
return meta_predictions[:, :6], meta_predictions[:, 6:] # Split predictions into contamination and gradients
# Predict contamination levels and gradients for the single example
contamination_levels, gradients = predict_contamination_and_gradients(example_data_scaled)
return contamination_levels[0], gradients[0]
except Exception as e:
print(f"Error in Gradio interface: {e}")
return ["Error"] * 12
def plot_contamination_over_time(velocity, temperature, precipitation, humidity):
try:
# Predict contamination levels first
contamination_levels, _ = predict_contamination_gradients(velocity, temperature, precipitation, humidity)
# Simulate contamination levels at multiple time intervals
time_intervals = np.arange(0, 601, 60) # Simulating time intervals from 0 to 600 seconds
# Generate simulated contamination levels (linear interpolation between predicted values)
simulated_contamination_levels = np.array([
np.linspace(contamination_levels[i], contamination_levels[i] * 2, len(time_intervals))
for i in range(len(contamination_levels))
]).T
# Plot the graph
fig, ax = plt.subplots(figsize=(12, 8))
lidar_names = ['F/L', 'F/R', 'Left', 'Right', 'Roof', 'Rear']
for i in range(simulated_contamination_levels.shape[1]):
ax.plot(time_intervals, simulated_contamination_levels[:, i], label=f'{lidar_names[i]}')
ax.axhline(y=0.4, color='r', linestyle='--', label='Contamination Threshold' if i == 0 else "")
ax.set_title('Contamination Levels Over Time for Each Lidar')
ax.set_xlabel('Time (seconds)')
ax.set_ylabel('Contamination Level')
ax.legend()
ax.grid(True)
return fig
except Exception as e:
print(f"Error in plotting: {e}")
return plt.figure()
inputs = [
gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"),
gr.Slider(minimum=-2, maximum=30, value=0, step=0.5, label="Temperature (°C)"),
gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Precipitation (inch)"),
gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)")
]
contamination_outputs = [
gr.Textbox(label="Front Left Contamination"),
gr.Textbox(label="Front Right Contamination"),
gr.Textbox(label="Left Contamination"),
gr.Textbox(label="Right Contamination"),
gr.Textbox(label="Roof Contamination"),
gr.Textbox(label="Rear Contamination")
]
gradients_outputs = [
gr.Textbox(label="Front Left Gradient"),
gr.Textbox(label="Front Right Gradient"),
gr.Textbox(label="Left Gradient"),
gr.Textbox(label="Right Gradient"),
gr.Textbox(label="Roof Gradient"),
gr.Textbox(label="Rear Gradient")
]
cleaning_time_outputs = [
gr.Textbox(label="Front Left Cleaning Time"),
gr.Textbox(label="Front Right Cleaning Time"),
gr.Textbox(label="Left Cleaning Time"),
gr.Textbox(label="Right Cleaning Time"),
gr.Textbox(label="Roof Cleaning Time"),
gr.Textbox(label="Rear Cleaning Time")
]
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center;'>Environmental Factor-Based Contamination, Gradient, & Cleaning Time Prediction</h1>")
gr.Markdown("This application predicts the contamination levels, gradients, and cleaning times for different parts of a car's LiDAR system based on environmental factors such as velocity, temperature, precipitation, and humidity.")
# Top Section: Inputs and Car Image
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### Input Parameters")
for inp in inputs:
inp.render()
# Submit and Clear Buttons under the inputs
with gr.Row():
gr.Button(value="Submit", variant="primary").click(
fn=predict_contamination_gradients,
inputs=inputs,
outputs=contamination_outputs + gradients_outputs + cleaning_time_outputs
)
gr.Button(value="Clear").click(fn=lambda: None)
with gr.Column(scale=1):
gr.Image(image_path)
# Middle Section: Outputs (Three columns)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### Contamination Predictions")
for out in contamination_outputs:
out.render()
with gr.Column(scale=2):
gr.Markdown("### Gradient Predictions")
for out in gradients_outputs:
out.render()
with gr.Column(scale=2):
gr.Markdown("### Cleaning Time Predictions")
for out in cleaning_time_outputs:
out.render()
# Bottom Section: Graph at the very end
with gr.Row():
with gr.Column():
gr.Markdown("### Contamination Levels Over Time")
gr.Plot(label="Contamination Levels Over Time").click(
fn=plot_contamination_over_time,
inputs=inputs,
outputs="plot"
)
demo.launch()
|