Update app.py
Browse files
app.py
CHANGED
|
@@ -105,6 +105,8 @@ def predict_and_plot(velocity, temperature, precipitation, humidity):
|
|
| 105 |
cleaning_time = t1 + (threshold - c1) * (t2 - t1) / (c2 - c1)
|
| 106 |
cleaning_times.append(cleaning_time)
|
| 107 |
break
|
|
|
|
|
|
|
| 108 |
return cleaning_times
|
| 109 |
|
| 110 |
# Calculate cleaning times for all 6 lidars
|
|
@@ -114,22 +116,22 @@ def predict_and_plot(velocity, temperature, precipitation, humidity):
|
|
| 114 |
lidar_names = ['F/L', 'F/R', 'Left', 'Right', 'Roof', 'Rear']
|
| 115 |
|
| 116 |
# Plot the graph
|
| 117 |
-
plt.
|
| 118 |
|
| 119 |
for i in range(simulated_contamination_levels.shape[1]):
|
| 120 |
-
|
| 121 |
-
|
| 122 |
if i < len(cleaning_times):
|
| 123 |
-
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
|
| 131 |
# Flatten the results into a single list of 13 outputs
|
| 132 |
-
plot_output =
|
| 133 |
contamination_output = [f"{val * 100:.2f}%" for val in contamination_levels[0]]
|
| 134 |
cleaning_time_output = [f"{val:.2f}" for val in cleaning_times]
|
| 135 |
|
|
|
|
| 105 |
cleaning_time = t1 + (threshold - c1) * (t2 - t1) / (c2 - c1)
|
| 106 |
cleaning_times.append(cleaning_time)
|
| 107 |
break
|
| 108 |
+
else:
|
| 109 |
+
cleaning_times.append(time_intervals[-1]) # If threshold is not reached
|
| 110 |
return cleaning_times
|
| 111 |
|
| 112 |
# Calculate cleaning times for all 6 lidars
|
|
|
|
| 116 |
lidar_names = ['F/L', 'F/R', 'Left', 'Right', 'Roof', 'Rear']
|
| 117 |
|
| 118 |
# Plot the graph
|
| 119 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
| 120 |
|
| 121 |
for i in range(simulated_contamination_levels.shape[1]):
|
| 122 |
+
ax.plot(time_intervals, simulated_contamination_levels[:, i], label=f'{lidar_names[i]}')
|
| 123 |
+
ax.axhline(y=0.4, color='r', linestyle='--', label='Contamination Threshold' if i == 0 else "")
|
| 124 |
if i < len(cleaning_times):
|
| 125 |
+
ax.scatter(cleaning_times[i], 0.4, color='k') # Mark the cleaning time point
|
| 126 |
|
| 127 |
+
ax.set_title('Contamination Levels Over Time for Each Lidar')
|
| 128 |
+
ax.set_xlabel('Time (seconds)')
|
| 129 |
+
ax.set_ylabel('Contamination Level')
|
| 130 |
+
ax.legend()
|
| 131 |
+
ax.grid(True)
|
| 132 |
|
| 133 |
# Flatten the results into a single list of 13 outputs
|
| 134 |
+
plot_output = fig
|
| 135 |
contamination_output = [f"{val * 100:.2f}%" for val in contamination_levels[0]]
|
| 136 |
cleaning_time_output = [f"{val:.2f}" for val in cleaning_times]
|
| 137 |
|