File size: 5,588 Bytes
162ac6d 434b870 8efcb6a 162ac6d 2646149 162ac6d 2646149 162ac6d fff7a83 162ac6d e48aa26 162ac6d 434b870 162ac6d e48aa26 162ac6d 2646149 162ac6d 863699a e48aa26 863699a 162ac6d 93212ca 162ac6d 434b870 93212ca 162ac6d 02f425e 162ac6d 02f425e 162ac6d 434b870 162ac6d 38ba782 162ac6d 5286b18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import gradio as gr
import time
from video_processing import process_video
from PIL import Image
import matplotlib
matplotlib.rcParams['figure.dpi'] = 300
matplotlib.rcParams['savefig.dpi'] = 300
def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
try:
print("Starting video processing...")
results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
print("Video processing completed.")
if isinstance(results[0], str) and results[0].startswith("Error"):
print(f"Error occurred: {results[0]}")
return [results[0]] + [None] * 17
exec_time, results_summary, df, mse_embeddings, mse_posture, \
mse_plot_embeddings, mse_histogram_embeddings, \
mse_plot_posture, mse_histogram_posture, \
mse_heatmap_embeddings, mse_heatmap_posture, \
face_samples_frequent, \
anomaly_faces_embeddings, anomaly_frames_posture_images, \
aligned_faces_folder, frames_folder = results
anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings]
anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images]
face_samples_frequent = [Image.open(path) for path in face_samples_frequent]
output = [
exec_time, results_summary,
df, mse_embeddings, mse_posture,
mse_plot_embeddings, mse_plot_posture,
mse_histogram_embeddings, mse_histogram_posture,
mse_heatmap_embeddings, mse_heatmap_posture,
anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
face_samples_frequent,
aligned_faces_folder, frames_folder,
mse_embeddings, mse_posture,
]
return output
except Exception as e:
error_message = f"An error occurred: {str(e)}"
print(error_message)
import traceback
traceback.print_exc()
return [error_message] + [None] * 17
with gr.Blocks() as iface:
gr.Markdown("""
# Multimodal Behavioral Anomalies Detection
The purpose of this tool is to detect anomalies in facial expressions and body language over the timeline of a video.
It extracts faces and postures from video frames, detects unique facial features and body postures, and analyzes them to identify anomalies using time series analysis, specifically utilizing a variational autoencoder (VAE) approach.
""")
with gr.Row():
video_input = gr.Video()
anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold (Standard deviation)")
fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second (FPS)")
process_btn = gr.Button("Detect Anomalies")
progress_bar = gr.Progress()
execution_time = gr.Number(label="Execution Time (seconds)")
with gr.Group(visible=False) as results_group:
results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)
with gr.Tab("Facial Features"):
mse_features_plot = gr.Plot(label="MSE: Facial Features")
mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
face_samples_most_frequent = gr.Gallery(label="Other Samples", columns=10, rows=2, height="auto")
#face_samples_others = gr.Gallery(label="Other Samples", columns=6, rows=1, height="auto")
with gr.Tab("Body Posture"):
mse_posture_plot = gr.Plot(label="MSE: Body Posture")
mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
with gr.Tab("Voice"):
mse_voice_plot = gr.Plot(label="MSE: Voice")
mse_voice_hist = gr.Plot(label="MSE Distribution: Voice")
mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")
anomaly_segments_voice = gr.Audio(label="Anomaly Voice Segments", type="filepath")
df_store = gr.State()
mse_features_store = gr.State()
mse_posture_store = gr.State()
aligned_faces_folder_store = gr.State()
frames_folder_store = gr.State()
mse_heatmap_embeddings_store = gr.State()
mse_heatmap_posture_store = gr.State()
process_btn.click(
process_and_show_completion,
inputs=[video_input, anomaly_threshold, fps_slider],
outputs=[
execution_time, results_text, df_store,
mse_features_store, mse_posture_store,
mse_features_plot, mse_posture_plot,
mse_features_hist, mse_posture_hist,
mse_features_heatmap, mse_posture_heatmap,
mse_voice_plot, mse_voice_hist, mse_voice_heatmap, anomaly_segments_voice,
anomaly_frames_features, anomaly_frames_posture,
face_samples_most_frequent,
aligned_faces_folder_store, frames_folder_store,
mse_heatmap_embeddings_store, mse_heatmap_posture_store
]
).then(
lambda: gr.Group(visible=True),
inputs=None,
outputs=[results_group]
)
if __name__ == "__main__":
iface.launch() |