Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import time
|
|
3 |
from video_processing import process_video
|
4 |
from PIL import Image
|
5 |
import matplotlib
|
6 |
-
import cv2
|
7 |
matplotlib.rcParams['figure.dpi'] = 500
|
8 |
matplotlib.rcParams['savefig.dpi'] = 500
|
9 |
|
@@ -15,7 +14,7 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
15 |
|
16 |
if isinstance(results[0], str) and results[0].startswith("Error"):
|
17 |
print(f"Error occurred: {results[0]}")
|
18 |
-
return [results[0]] + [None] *
|
19 |
|
20 |
exec_time, results_summary, df, mse_embeddings, mse_posture, \
|
21 |
mse_plot_embeddings, mse_histogram_embeddings, \
|
@@ -23,7 +22,7 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
23 |
mse_heatmap_embeddings, mse_heatmap_posture, \
|
24 |
face_samples_frequent, face_samples_other, \
|
25 |
anomaly_faces_embeddings, anomaly_frames_posture_images, \
|
26 |
-
aligned_faces_folder, frames_folder
|
27 |
|
28 |
anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings]
|
29 |
anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images]
|
@@ -40,7 +39,7 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
40 |
anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
|
41 |
face_samples_frequent, face_samples_other,
|
42 |
aligned_faces_folder, frames_folder,
|
43 |
-
mse_embeddings, mse_posture,
|
44 |
]
|
45 |
|
46 |
return output
|
@@ -50,14 +49,17 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
50 |
print(error_message)
|
51 |
import traceback
|
52 |
traceback.print_exc()
|
53 |
-
return [error_message] + [None] *
|
54 |
|
55 |
with gr.Blocks() as iface:
|
56 |
gr.Markdown("""
|
57 |
-
#
|
58 |
|
59 |
-
|
60 |
-
It
|
|
|
|
|
|
|
61 |
""")
|
62 |
|
63 |
with gr.Row():
|
@@ -84,9 +86,6 @@ with gr.Blocks() as iface:
|
|
84 |
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
|
85 |
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
|
86 |
|
87 |
-
with gr.Tab("Annotated Video"):
|
88 |
-
annotated_video_output = gr.Video(label="Annotated Video")
|
89 |
-
|
90 |
with gr.Tab("Face Samples"):
|
91 |
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples (Target)", columns=6, rows=2, height="auto")
|
92 |
face_samples_others = gr.Gallery(label="Other Persons Samples", columns=6, rows=1, height="auto")
|
@@ -111,8 +110,7 @@ with gr.Blocks() as iface:
|
|
111 |
anomaly_frames_features, anomaly_frames_posture,
|
112 |
face_samples_most_frequent, face_samples_others,
|
113 |
aligned_faces_folder_store, frames_folder_store,
|
114 |
-
mse_heatmap_embeddings_store, mse_heatmap_posture_store
|
115 |
-
annotated_video_output
|
116 |
]
|
117 |
).then(
|
118 |
lambda: gr.Group(visible=True),
|
|
|
3 |
from video_processing import process_video
|
4 |
from PIL import Image
|
5 |
import matplotlib
|
|
|
6 |
matplotlib.rcParams['figure.dpi'] = 500
|
7 |
matplotlib.rcParams['savefig.dpi'] = 500
|
8 |
|
|
|
14 |
|
15 |
if isinstance(results[0], str) and results[0].startswith("Error"):
|
16 |
print(f"Error occurred: {results[0]}")
|
17 |
+
return [results[0]] + [None] * 18
|
18 |
|
19 |
exec_time, results_summary, df, mse_embeddings, mse_posture, \
|
20 |
mse_plot_embeddings, mse_histogram_embeddings, \
|
|
|
22 |
mse_heatmap_embeddings, mse_heatmap_posture, \
|
23 |
face_samples_frequent, face_samples_other, \
|
24 |
anomaly_faces_embeddings, anomaly_frames_posture_images, \
|
25 |
+
aligned_faces_folder, frames_folder = results
|
26 |
|
27 |
anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings]
|
28 |
anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images]
|
|
|
39 |
anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
|
40 |
face_samples_frequent, face_samples_other,
|
41 |
aligned_faces_folder, frames_folder,
|
42 |
+
mse_embeddings, mse_posture,
|
43 |
]
|
44 |
|
45 |
return output
|
|
|
49 |
print(error_message)
|
50 |
import traceback
|
51 |
traceback.print_exc()
|
52 |
+
return [error_message] + [None] * 18
|
53 |
|
54 |
with gr.Blocks() as iface:
|
55 |
gr.Markdown("""
|
56 |
+
# Facial Expression and Body Language Anomaly Detection
|
57 |
|
58 |
+
This application analyzes videos to detect anomalies in facial features and body language.
|
59 |
+
It processes the video frames to extract facial embeddings and body posture,
|
60 |
+
then uses machine learning techniques to identify unusual patterns or deviations from the norm.
|
61 |
+
|
62 |
+
For more information, visit: [https://github.com/reab5555/Facial-Expression-Anomaly-Detection](https://github.com/reab5555/Facial-Expression-Anomaly-Detection)
|
63 |
""")
|
64 |
|
65 |
with gr.Row():
|
|
|
86 |
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
|
87 |
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
|
88 |
|
|
|
|
|
|
|
89 |
with gr.Tab("Face Samples"):
|
90 |
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples (Target)", columns=6, rows=2, height="auto")
|
91 |
face_samples_others = gr.Gallery(label="Other Persons Samples", columns=6, rows=1, height="auto")
|
|
|
110 |
anomaly_frames_features, anomaly_frames_posture,
|
111 |
face_samples_most_frequent, face_samples_others,
|
112 |
aligned_faces_folder_store, frames_folder_store,
|
113 |
+
mse_heatmap_embeddings_store, mse_heatmap_posture_store
|
|
|
114 |
]
|
115 |
).then(
|
116 |
lambda: gr.Group(visible=True),
|