File size: 5,994 Bytes
162ac6d
 
 
 
 
434b870
8efcb6a
 
162ac6d
 
 
 
 
 
 
 
 
aeb4947
2d9c135
aeb4947
711f9d0
 
aeb4947
 
711f9d0
 
 
 
162ac6d
711f9d0
 
162ac6d
711f9d0
e48aa26
162ac6d
 
aeb4947
 
 
 
162ac6d
434b870
162ac6d
aeb4947
711f9d0
162ac6d
 
 
 
 
 
 
 
 
aeb4947
162ac6d
 
 
863699a
e48aa26
aeb4947
 
162ac6d
 
 
 
 
93212ca
 
162ac6d
 
 
 
 
 
 
 
 
 
 
 
2d9c135
162ac6d
 
 
 
 
 
 
aeb4947
 
 
 
 
711f9d0
 
02f425e
162ac6d
 
 
aeb4947
162ac6d
 
 
 
aeb4947
162ac6d
 
 
 
 
 
aeb4947
 
 
 
162ac6d
434b870
162ac6d
aeb4947
711f9d0
162ac6d
 
 
 
 
 
 
 
5286b18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import gradio as gr
import time
from video_processing import process_video
from PIL import Image
import matplotlib

matplotlib.rcParams['figure.dpi'] = 300
matplotlib.rcParams['savefig.dpi'] = 300

def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
    try:
        print("Starting video processing...")
        results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
        print("Video processing completed.")

        if isinstance(results[0], str) and results[0].startswith("Error"):
            print(f"Error occurred: {results[0]}")
            return [results[0]] + [None] * 23  # Increased number of None values

        exec_time, results_summary, df, mse_embeddings, mse_posture, mse_voice, \
            mse_plot_embeddings, mse_histogram_embeddings, \
            mse_plot_posture, mse_histogram_posture, \
            mse_plot_voice, mse_histogram_voice, \
            mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice, \
            face_samples_frequent, \
            anomaly_faces_embeddings, anomaly_frames_posture_images, \
            aligned_faces_folder, frames_folder, \
            heatmap_video_path = results

        anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings] if anomaly_faces_embeddings is not None else []
        anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images] if anomaly_frames_posture_images is not None else []

        face_samples_frequent = [Image.open(path) for path in face_samples_frequent] if face_samples_frequent is not None else []

        output = [
            exec_time, results_summary,
            df, mse_embeddings, mse_posture, mse_voice,
            mse_plot_embeddings, mse_plot_posture, mse_plot_voice,
            mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice,
            mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice,
            anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
            face_samples_frequent,
            aligned_faces_folder, frames_folder,
            mse_embeddings, mse_posture, mse_voice,
            heatmap_video_path
        ]

        return output

    except Exception as e:
        error_message = f"An error occurred: {str(e)}"
        print(error_message)
        import traceback
        traceback.print_exc()
        return [error_message] + [None] * 23  # Increased number of None values

with gr.Blocks() as iface:
    gr.Markdown("""
    # Multimodal Behavioral Anomalies Detection

    This tool detects anomalies in facial expressions, body language, and voice over the timeline of a video.
    It extracts faces, postures, and voice from video frames, and analyzes them to identify anomalies using time series analysis and a variational autoencoder (VAE) approach.
    """)

    with gr.Row():
        video_input = gr.Video()

    anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold (Standard deviation)")
    fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second (FPS)")
    process_btn = gr.Button("Detect Anomalies")
    progress_bar = gr.Progress()
    execution_time = gr.Number(label="Execution Time (seconds)")

    with gr.Group(visible=False) as results_group:
        results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)

        with gr.Tab("Facial Features"):
            mse_features_plot = gr.Plot(label="MSE: Facial Features")
            mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
            mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
            anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
            face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples", columns=10, rows=2, height="auto")

        with gr.Tab("Body Posture"):
            mse_posture_plot = gr.Plot(label="MSE: Body Posture")
            mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
            mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
            anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")

        with gr.Tab("Voice"):
            mse_voice_plot = gr.Plot(label="MSE: Voice")
            mse_voice_hist = gr.Plot(label="MSE Distribution: Voice")
            mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")

        with gr.Tab("Video with Heatmap"):
            heatmap_video = gr.Video(label="Video with Anomaly Heatmap")

    df_store = gr.State()
    mse_features_store = gr.State()
    mse_posture_store = gr.State()
    mse_voice_store = gr.State()
    aligned_faces_folder_store = gr.State()
    frames_folder_store = gr.State()
    mse_heatmap_embeddings_store = gr.State()
    mse_heatmap_posture_store = gr.State()
    mse_heatmap_voice_store = gr.State()

    process_btn.click(
        process_and_show_completion,
        inputs=[video_input, anomaly_threshold, fps_slider],
        outputs=[
            execution_time, results_text, df_store,
            mse_features_store, mse_posture_store, mse_voice_store,
            mse_features_plot, mse_posture_plot, mse_voice_plot,
            mse_features_hist, mse_posture_hist, mse_voice_hist,
            mse_features_heatmap, mse_posture_heatmap, mse_voice_heatmap,
            anomaly_frames_features, anomaly_frames_posture,
            face_samples_most_frequent,
            aligned_faces_folder_store, frames_folder_store,
            mse_heatmap_embeddings_store, mse_heatmap_posture_store, mse_heatmap_voice_store,
            heatmap_video
        ]
    ).then(
        lambda: gr.Group(visible=True),
        inputs=None,
        outputs=[results_group]
    )

if __name__ == "__main__":
    iface.launch()