File size: 6,825 Bytes
bafab47
 
 
 
064088f
bafab47
064088f
 
bafab47
 
afe7a1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bafab47
064088f
5ab8bcc
bafab47
95703f6
5ab8bcc
95703f6
162ac6d
064088f
95703f6
162ac6d
93212ca
 
162ac6d
064088f
99345db
 
 
 
064088f
95703f6
5ab8bcc
5de1bb7
 
 
 
 
 
 
95703f6
5de1bb7
 
 
 
 
 
 
95703f6
5de1bb7
 
 
 
 
95703f6
5de1bb7
 
 
 
95703f6
 
5de1bb7
 
064088f
 
 
 
 
 
 
 
 
 
c500bb3
162ac6d
95703f6
 
5ab8bcc
95703f6
064088f
162ac6d
 
064088f
 
 
aeb4947
 
162ac6d
064088f
 
 
 
162ac6d
064088f
 
 
5ab8bcc
162ac6d
 
 
064088f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import gradio as gr
import time
from video_processing import process_video
from PIL import Image
import matplotlib

matplotlib.rcParams['figure.dpi'] = 300
matplotlib.rcParams['savefig.dpi'] = 300

def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
    try:
        print("Starting video processing...")
        results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
        print("Video processing completed.")

        if isinstance(results[0], str) and results[0].startswith("Error"):
            print(f"Error occurred: {results[0]}")
            return [results[0]] + [None] * 27

        exec_time, results_summary, df, mse_embeddings, mse_posture, mse_voice, \
            mse_plot_embeddings, mse_plot_posture, mse_plot_voice, \
            mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice, \
            mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice, \
            face_samples_frequent, \
            anomaly_faces_embeddings, anomaly_frames_posture_images, \
            aligned_faces_folder, frames_folder, \
            heatmap_video_path, combined_mse_plot, correlation_heatmap = results

        anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings] if anomaly_faces_embeddings is not None else []
        anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images] if anomaly_frames_posture_images is not None else []

        face_samples_frequent = [Image.open(path) for path in face_samples_frequent] if face_samples_frequent is not None else []

        output = [
            exec_time, results_summary,
            df, mse_embeddings, mse_posture, mse_voice,
            mse_plot_embeddings, mse_plot_posture, mse_plot_voice,
            mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice,
            mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice,
            anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
            face_samples_frequent,
            aligned_faces_folder, frames_folder,
            mse_embeddings, mse_posture, mse_voice,
            heatmap_video_path, combined_mse_plot, correlation_heatmap
        ]

        return output

    except Exception as e:
        error_message = f"An error occurred: {str(e)}"
        print(error_message)
        import traceback
        traceback.print_exc()
        return [error_message] + [None] * 27

def show_results(outputs):
    return [gr.Tab.update(visible=True) for _ in range(4)] + [gr.Tab.update(visible=False)], gr.Group(visible=True)

def hide_description_show_results():
    return [gr.Tab.update(visible=False)] + [gr.Tab.update(visible=True) for _ in range(4)]

with gr.Blocks() as iface:
    with gr.Row():
        video_input = gr.Video(label="Input Video", visible=False)

    anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold (Standard deviation)")
    fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second (FPS)")
    process_btn = gr.Button("Detect Anomalies")
    progress_bar = gr.Progress()
    
    execution_time_group = gr.Group(visible=False)
    with execution_time_group:
        execution_time = gr.Number(label="Execution Time (seconds)")

    with gr.Tabs() as all_tabs:
        with gr.Tab("Description", visible=True):
            gr.Markdown("""
            # Multimodal Behavioral Anomalies Detection

            This tool detects anomalies in facial expressions, body language, and voice over the timeline of a video.
            It extracts faces, postures, and voice from video frames, and analyzes them to identify anomalies using time series analysis and a variational autoencoder (VAE) approach.
            """)

        with gr.Tab("Facial Features", visible=False):
            results_text = gr.TextArea(label="Faces Breakdown", lines=5)
            mse_features_plot = gr.Plot(label="MSE: Facial Features")
            mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
            mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
            anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
            face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples", columns=10, rows=2, height="auto")

        with gr.Tab("Body Posture", visible=False):
            mse_posture_plot = gr.Plot(label="MSE: Body Posture")
            mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
            mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
            anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")

        with gr.Tab("Voice", visible=False):
            mse_voice_plot = gr.Plot(label="MSE: Voice")
            mse_voice_hist = gr.Plot(label="MSE Distribution: Voice")
            mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")

        with gr.Tab("Combined", visible=False):
            heatmap_video = gr.Video(label="Video with Anomaly Heatmap")
            combined_mse_plot = gr.Plot(label="Combined MSE Plot")
            correlation_heatmap_plot = gr.Plot(label="Correlation Heatmap")
                
    df_store = gr.State()
    mse_features_store = gr.State()
    mse_posture_store = gr.State()
    mse_voice_store = gr.State()
    aligned_faces_folder_store = gr.State()
    frames_folder_store = gr.State()
    mse_heatmap_embeddings_store = gr.State()
    mse_heatmap_posture_store = gr.State()
    mse_heatmap_voice_store = gr.State()
    
    process_btn.click(
        hide_description_show_results,
        inputs=None,
        outputs=all_tabs.children
    ).then(
        process_and_show_completion,
        inputs=[video_input, anomaly_threshold, fps_slider],
        outputs=[
            execution_time, results_text, df_store,
            mse_features_store, mse_posture_store, mse_voice_store,
            mse_features_plot, mse_posture_plot, mse_voice_plot,
            mse_features_hist, mse_posture_hist, mse_voice_hist,
            mse_features_heatmap, mse_posture_heatmap, mse_voice_heatmap,
            anomaly_frames_features, anomaly_frames_posture,
            face_samples_most_frequent,
            aligned_faces_folder_store, frames_folder_store,
            mse_heatmap_embeddings_store, mse_heatmap_posture_store, mse_heatmap_voice_store,
            heatmap_video, combined_mse_plot, correlation_heatmap_plot
        ]
    ).then(
        show_results,
        inputs=None,
        outputs=[all_tabs.children, execution_time_group]
    )

if __name__ == "__main__":
    iface.launch()