File size: 15,964 Bytes
11e16fe 859cec7 f037e1e 88ae781 caf2618 11e16fe 2ab7633 2128c11 2e27102 ab7a94a 11e16fe 71c6d95 b6d52dc 0b7634e 11e16fe bd57c84 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe c78126c 11e16fe 86a04fb d76a2e5 86a04fb 77142e3 86a04fb 77142e3 86a04fb a337f54 86a04fb a337f54 86a04fb 77142e3 86a04fb d76a2e5 86a04fb d76a2e5 77142e3 d76a2e5 11e16fe bd57c84 11e16fe c78126c 11e16fe caf2618 11e16fe bd57c84 11e16fe 5fefb86 11e16fe 5fefb86 11e16fe bd57c84 11e16fe abc304c 4d4ae71 9130830 b68e4d5 392b31b f037e1e 2128c11 3fab580 26223d9 f037e1e ed36df7 f037e1e 2128c11 ed36df7 f037e1e 26a4c32 92bbbb6 f037e1e 2128c11 f037e1e 2128c11 f037e1e 9130830 b68e4d5 f037e1e 859cec7 99614c2 859cec7 3ad6751 99614c2 859cec7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import matplotlib.colors as mcolors
from matplotlib.colors import LinearSegmentedColormap
import seaborn as sns
import numpy as np
import pandas as pd
import cv2
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip, ImageClip, VideoClip, concatenate_videoclips
from moviepy.video.fx.all import resize
from PIL import Image, ImageDraw, ImageFont
from matplotlib.patches import Rectangle
from utils import seconds_to_timecode
from anomaly_detection import determine_anomalies
from scipy import interpolate
import gradio as gr
import os
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
plt.figure(figsize=(16, 8), dpi=300)
fig, ax = plt.subplots(figsize=(16, 8))
if 'Seconds' not in df.columns:
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
# Ensure df and mse_values have the same length and remove NaN values
min_length = min(len(df), len(mse_values))
df = df.iloc[:min_length].copy()
mse_values = mse_values[:min_length]
# Remove NaN values and create a mask for valid data
valid_mask = ~np.isnan(mse_values)
df = df[valid_mask]
mse_values = mse_values[valid_mask]
# Function to identify continuous segments
def get_continuous_segments(seconds, values, max_gap=1):
segments = []
current_segment = []
for i, (sec, val) in enumerate(zip(seconds, values)):
if not current_segment or (sec - current_segment[-1][0] <= max_gap):
current_segment.append((sec, val))
else:
segments.append(current_segment)
current_segment = [(sec, val)]
if current_segment:
segments.append(current_segment)
return segments
# Get continuous segments
segments = get_continuous_segments(df['Seconds'], mse_values)
# Plot each segment separately
for segment in segments:
segment_seconds, segment_mse = zip(*segment)
ax.scatter(segment_seconds, segment_mse, color=color, alpha=0.3, s=5)
# Calculate and plot rolling mean and std for this segment
if len(segment) > 1: # Only if there's more than one point in the segment
segment_df = pd.DataFrame({'Seconds': segment_seconds, 'MSE': segment_mse})
segment_df = segment_df.sort_values('Seconds')
mean = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).mean()
std = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).std()
ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5)
ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)
# Rest of the function remains the same
median = np.median(mse_values)
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Anomaly Threshold')
ax.text(ax.get_xlim()[1], threshold, f'Anomaly Threshold', verticalalignment='center', horizontalalignment='left', color='red')
anomalies = determine_anomalies(mse_values, anomaly_threshold)
anomaly_frames = df['Frame'].iloc[anomalies].tolist()
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)
anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
df['Seconds'].iloc[anomalies],
mse_values[anomalies]))
anomaly_data.sort(key=lambda x: x[1])
grouped_anomalies = []
current_group = []
for timecode, sec, mse in anomaly_data:
if not current_group or sec - current_group[-1][1] <= time_threshold:
current_group.append((timecode, sec, mse))
else:
grouped_anomalies.append(current_group)
current_group = [(timecode, sec, mse)]
if current_group:
grouped_anomalies.append(current_group)
for group in grouped_anomalies:
start_sec = group[0][1]
end_sec = group[-1][1]
rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
facecolor='red', alpha=0.2, zorder=1)
ax.add_patch(rect)
for group in grouped_anomalies:
highest_mse_anomaly = max(group, key=lambda x: x[2])
timecode, sec, mse = highest_mse_anomaly
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
ha='center', fontsize=6, color='red')
max_seconds = df['Seconds'].max()
num_ticks = 100
tick_locations = np.linspace(0, max_seconds, num_ticks)
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
ax.set_xlabel('Timecode')
ax.set_ylabel('Mean Squared Error')
ax.set_title(title)
ax.grid(True, linestyle='--', alpha=0.7)
ax.legend()
plt.tight_layout()
plt.close()
return fig, anomaly_frames
def plot_combined_mse(df, mse_embeddings, mse_posture, mse_voice, title, anomaly_threshold=4, time_threshold=3):
plt.figure(figsize=(16, 8), dpi=300)
fig, ax = plt.subplots(figsize=(16, 8))
if 'Seconds' not in df.columns:
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
# Function to identify continuous segments
def get_continuous_segments(seconds, values, max_gap=1):
segments = []
current_segment = []
for i, (sec, val) in enumerate(zip(seconds, values)):
if not current_segment or (sec - current_segment[-1][0] <= max_gap):
current_segment.append((sec, val))
else:
segments.append(current_segment)
current_segment = [(sec, val)]
if current_segment:
segments.append(current_segment)
return segments
# Scale all MSE values to the same range (0 to 1)
def scale_mse(mse_values):
min_val = np.min(mse_values)
max_val = np.max(mse_values)
return (mse_values - min_val) / (max_val - min_val)
mse_embeddings_scaled = scale_mse(mse_embeddings)
mse_posture_scaled = scale_mse(mse_posture)
mse_voice_scaled = scale_mse(mse_voice)
# Plot each data series
for mse_values, color, label in zip([mse_embeddings_scaled, mse_posture_scaled, mse_voice_scaled],
['navy', 'purple', 'green'],
['Facial Features', 'Body Posture', 'Voice']):
segments = get_continuous_segments(df['Seconds'], mse_values)
for segment in segments:
segment_seconds, segment_mse = zip(*segment)
ax.scatter(segment_seconds, segment_mse, color=color, alpha=0.3, s=5, label=label if segment == segments[0] else "")
if len(segment) > 1:
segment_df = pd.DataFrame({'Seconds': segment_seconds, 'MSE': segment_mse})
segment_df = segment_df.sort_values('Seconds')
mean = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).mean()
std = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).std()
ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5)
ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)
# Plot median baseline for each series
median = np.median(mse_values)
ax.axhline(y=median, color=color, linestyle=':', alpha=0.5, label=f'{label} Baseline Median')
# Plot threshold for each series
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
ax.axhline(y=threshold, color=color, linestyle='--', alpha=1, label=f'{label} Anomaly Threshold')
# Plot anomalies in red
anomalies = mse_values > threshold
ax.scatter(df['Seconds'][anomalies], mse_values[anomalies], color='red', s=20, zorder=5)
max_seconds = df['Seconds'].max()
num_ticks = 100
tick_locations = np.linspace(0, max_seconds, num_ticks)
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
ax.set_xlabel('Timecode')
ax.set_ylabel('Scaled Mean Squared Error')
ax.set_title(title)
ax.grid(True, linestyle='--', alpha=0.7)
ax.legend()
plt.tight_layout()
plt.close()
return fig
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
plt.figure(figsize=(16, 3), dpi=300)
fig, ax = plt.subplots(figsize=(16, 3))
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
ax.set_xlabel('Mean Squared Error')
ax.set_ylabel('Number of Frames')
ax.set_title(title)
mean = np.mean(mse_values)
std = np.std(mse_values)
threshold = mean + anomaly_threshold * std
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)
plt.tight_layout()
plt.close()
return fig
def plot_mse_heatmap(mse_values, title, df):
plt.figure(figsize=(20, 3), dpi=300)
fig, ax = plt.subplots(figsize=(20, 3))
# Reshape MSE values to 2D array for heatmap
mse_2d = mse_values.reshape(1, -1)
# Create heatmap
sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax)
# Set x-axis ticks to timecodes
num_ticks = min(60, len(mse_values))
tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
# Ensure tick_locations are within bounds
tick_locations = tick_locations[tick_locations < len(df)]
tick_labels = [df['Timecode'].iloc[i] if i < len(df) else '' for i in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')
ax.set_title(title)
# Remove y-axis labels
ax.set_yticks([])
plt.tight_layout()
plt.close()
return fig
def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
plt.figure(figsize=(16, 8), dpi=300)
fig, ax = plt.subplots(figsize=(16, 8))
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
posture_frames, posture_scores = zip(*posture_data)
# Create a new dataframe for posture data
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
mean = posture_df['Score'].rolling(window=10).mean()
ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)
ax.set_xlabel('Timecode')
ax.set_ylabel('Posture Score')
ax.set_title("Body Posture Over Time")
ax.grid(True, linestyle='--', alpha=0.7)
max_seconds = df['Seconds'].max()
num_ticks = 80
tick_locations = np.linspace(0, max_seconds, num_ticks)
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
plt.tight_layout()
plt.close()
return fig
def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video_fps, total_frames, video_width):
frame_count = int(t * video_fps)
# Normalize MSE values
mse_embeddings_norm = (mse_embeddings - np.min(mse_embeddings)) / (np.max(mse_embeddings) - np.min(mse_embeddings))
mse_posture_norm = (mse_posture - np.min(mse_posture)) / (np.max(mse_posture) - np.min(mse_posture))
mse_voice_norm = (mse_voice - np.min(mse_voice)) / (np.max(mse_voice) - np.min(mse_voice))
combined_mse = np.zeros((3, total_frames))
combined_mse[0] = mse_embeddings_norm
combined_mse[1] = mse_posture_norm
combined_mse[2] = mse_voice_norm
fig, ax = plt.subplots(figsize=(video_width / 250, 0.6))
ax.imshow(combined_mse, aspect='auto', cmap='Reds', vmin=0, vmax=1, extent=[0, total_frames, 0, 3])
ax.set_yticks([0.5, 1.5, 2.5])
ax.set_yticklabels(['Voice', 'Posture', 'Face'], fontsize=7)
ax.set_xticks([])
ax.axvline(x=frame_count, color='black', linewidth=3)
plt.tight_layout(pad=0.5)
canvas = FigureCanvas(fig)
canvas.draw()
heatmap_img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return heatmap_img
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, largest_cluster):
print(f"Creating heatmap video. Output folder: {output_folder}")
os.makedirs(output_folder, exist_ok=True)
output_filename = os.path.basename(video_path).rsplit('.', 1)[0] + '_heatmap.mp4'
heatmap_video_path = os.path.join(output_folder, output_filename)
print(f"Heatmap video will be saved at: {heatmap_video_path}")
# Load the original video
video = VideoFileClip(video_path)
# Get video properties
width, height = video.w, video.h
total_frames = int(video.duration * video.fps)
# Ensure all MSE arrays have the same length as total_frames
mse_embeddings = np.interp(np.linspace(0, len(mse_embeddings) - 1, total_frames),
np.arange(len(mse_embeddings)), mse_embeddings)
mse_posture = np.interp(np.linspace(0, len(mse_posture) - 1, total_frames),
np.arange(len(mse_posture)), mse_posture)
mse_voice = np.interp(np.linspace(0, len(mse_voice) - 1, total_frames),
np.arange(len(mse_voice)), mse_voice)
def combine_video_and_heatmap(t):
video_frame = video.get_frame(t)
heatmap_frame = create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video.fps, total_frames, width)
heatmap_frame_resized = cv2.resize(heatmap_frame, (width, heatmap_frame.shape[0]))
combined_frame = np.vstack((video_frame, heatmap_frame_resized))
return combined_frame
final_clip = VideoClip(combine_video_and_heatmap, duration=video.duration)
final_clip = final_clip.set_audio(video.audio)
# Write the final video
final_clip.write_videofile(heatmap_video_path, codec='libx264', audio_codec='aac', fps=video.fps)
# Close the video clips
video.close()
final_clip.close()
if os.path.exists(heatmap_video_path):
print(f"Heatmap video created at: {heatmap_video_path}")
print(f"Heatmap video size: {os.path.getsize(heatmap_video_path)} bytes")
return heatmap_video_path
else:
print(f"Failed to create heatmap video at: {heatmap_video_path}")
return None
# Function to create the correlation heatmap
def plot_correlation_heatmap(mse_embeddings, mse_posture, mse_voice):
data = np.vstack((mse_embeddings, mse_posture, mse_voice)).T
df = pd.DataFrame(data, columns=["Facial Features", "Body Posture", "Voice"])
corr = df.corr()
plt.figure(figsize=(10, 8), dpi=300)
heatmap = sns.heatmap(corr, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
plt.title('Correlation Heatmap of MSEs')
plt.tight_layout()
return plt.gcf()
|