File size: 5,179 Bytes
162ac6d
 
 
 
 
434b870
8efcb6a
 
162ac6d
 
 
 
 
 
 
 
 
2646149
162ac6d
 
 
 
 
2646149
162ac6d
fff7a83
162ac6d
 
 
 
 
e48aa26
162ac6d
 
 
 
 
 
 
434b870
162ac6d
e48aa26
162ac6d
 
 
 
 
 
 
 
 
2646149
162ac6d
 
 
863699a
e48aa26
863699a
 
162ac6d
 
 
 
 
93212ca
 
162ac6d
 
 
 
 
 
 
 
 
 
 
 
434b870
93212ca
162ac6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434b870
162ac6d
38ba782
162ac6d
 
 
 
 
 
 
 
5286b18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import gradio as gr
import time
from video_processing import process_video
from PIL import Image
import matplotlib

matplotlib.rcParams['figure.dpi'] = 300
matplotlib.rcParams['savefig.dpi'] = 300

def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
    try:
        print("Starting video processing...")
        results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
        print("Video processing completed.")

        if isinstance(results[0], str) and results[0].startswith("Error"):
            print(f"Error occurred: {results[0]}")
            return [results[0]] + [None] * 17

        exec_time, results_summary, df, mse_embeddings, mse_posture, \
            mse_plot_embeddings, mse_histogram_embeddings, \
            mse_plot_posture, mse_histogram_posture, \
            mse_heatmap_embeddings, mse_heatmap_posture, \
            face_samples_frequent, \
            anomaly_faces_embeddings, anomaly_frames_posture_images, \
            aligned_faces_folder, frames_folder = results

        anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings]
        anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images]

        face_samples_frequent = [Image.open(path) for path in face_samples_frequent]

        output = [
            exec_time, results_summary,
            df, mse_embeddings, mse_posture,
            mse_plot_embeddings, mse_plot_posture,
            mse_histogram_embeddings, mse_histogram_posture,
            mse_heatmap_embeddings, mse_heatmap_posture,
            anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
            face_samples_frequent,
            aligned_faces_folder, frames_folder,
            mse_embeddings, mse_posture,
        ]

        return output

    except Exception as e:
        error_message = f"An error occurred: {str(e)}"
        print(error_message)
        import traceback
        traceback.print_exc()
        return [error_message] + [None] * 17

with gr.Blocks() as iface:
    gr.Markdown("""
    # Multimodal Behavioral Anomalies Detection

    The purpose of this tool is to detect anomalies in facial expressions and body language over the timeline of a video.
    It extracts faces and postures from video frames, detects unique facial features and body postures, and analyzes them to identify anomalies using time series analysis, specifically utilizing a variational autoencoder (VAE) approach.
    """)

    with gr.Row():
        video_input = gr.Video()

    anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold (Standard deviation)")
    fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second (FPS)")
    process_btn = gr.Button("Detect Anomalies")
    progress_bar = gr.Progress()
    execution_time = gr.Number(label="Execution Time (seconds)")

    with gr.Group(visible=False) as results_group:
        results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)

        with gr.Tab("Facial Features"):
            mse_features_plot = gr.Plot(label="MSE: Facial Features")
            mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
            mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
            anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
            face_samples_most_frequent = gr.Gallery(label="Other Samples", columns=10, rows=2, height="auto")
            #face_samples_others = gr.Gallery(label="Other Samples", columns=6, rows=1, height="auto")

        with gr.Tab("Body Posture"):
            mse_posture_plot = gr.Plot(label="MSE: Body Posture")
            mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
            mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
            anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")

    df_store = gr.State()
    mse_features_store = gr.State()
    mse_posture_store = gr.State()
    aligned_faces_folder_store = gr.State()
    frames_folder_store = gr.State()
    mse_heatmap_embeddings_store = gr.State()
    mse_heatmap_posture_store = gr.State()

    process_btn.click(
        process_and_show_completion,
        inputs=[video_input, anomaly_threshold, fps_slider],
        outputs=[
            execution_time, results_text, df_store,
            mse_features_store, mse_posture_store,
            mse_features_plot, mse_posture_plot,
            mse_features_hist, mse_posture_hist,
            mse_features_heatmap, mse_posture_heatmap,
            anomaly_frames_features, anomaly_frames_posture,
            face_samples_most_frequent,
            aligned_faces_folder_store, frames_folder_store,
            mse_heatmap_embeddings_store, mse_heatmap_posture_store
        ]
    ).then(
        lambda: gr.Group(visible=True),
        inputs=None,
        outputs=[results_group]
    )

if __name__ == "__main__":
    iface.launch()