File size: 9,181 Bytes
13d7bed a27e6f2 13d7bed a27e6f2 13d7bed f57fde9 a27e6f2 f57fde9 13d7bed a27e6f2 f57fde9 a27e6f2 1f43f91 a27e6f2 13d7bed f57fde9 3da6b4f f57fde9 3da6b4f f57fde9 3da6b4f a27e6f2 3da6b4f 13d7bed f57fde9 3da6b4f f57fde9 a27e6f2 3da6b4f f57fde9 3da6b4f 13d7bed a27e6f2 3da6b4f 13d7bed a27e6f2 f57fde9 a27e6f2 3da6b4f a27e6f2 3da6b4f a27e6f2 3da6b4f a27e6f2 3da6b4f a27e6f2 3da6b4f a27e6f2 3da6b4f a27e6f2 3da6b4f a27e6f2 3da6b4f a27e6f2 13d7bed fcba7cb 3da6b4f fcba7cb 3da6b4f a27e6f2 13d7bed 3da6b4f 13d7bed 3da6b4f 13d7bed 3da6b4f b7b543a 13d7bed a27e6f2 6ab9894 13d7bed 6ab9894 3da6b4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import torch
from PIL import Image
import requests
from openai import OpenAI
from transformers import (Owlv2Processor, Owlv2ForObjectDetection,
AutoProcessor, AutoModelForMaskGeneration)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import base64
import io
import numpy as np
import gradio as gr
import json
import os
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
def resize_and_compress(image, max_width=800, max_height=800, quality=50):
"""Resize (if > max_width/height) and compress the image to keep Base64 under ~1MB."""
if not isinstance(image, Image.Image):
raise ValueError("Input must be a PIL Image")
width, height = image.size
if width > max_width or height > max_height:
aspect_ratio = width / height
if aspect_ratio > 1:
new_width = max_width
new_height = int(new_width / aspect_ratio)
else:
new_height = max_height
new_width = int(new_height * aspect_ratio)
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
buffered = io.BytesIO()
# Save as JPEG with reduced quality
image.save(buffered, format="JPEG", quality=quality)
buffered.seek(0)
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def analyze_image(image):
client = OpenAI(api_key=OPENAI_API_KEY)
# Step 1: Resize + compress to keep the Base64 string under 1 MB
base64_image = resize_and_compress(image, max_width=800, max_height=800, quality=50)
# Build the list-of-dicts prompt
prompt_dict = [
{
"type": "text",
"text": """Your task is to determine if the image is surprising or not.
If the image is surprising, which element is surprising (max 6 words).
Otherwise, 'NA'. Also rate how surprising (1-5).
Return JSON like:
{
"label": "[surprising or not surprising]",
"element": "[element]",
"rating": [1-5]
}
"""
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
# JSON-encode to ensure content is a string
json_prompt = json.dumps(prompt_dict)
# Send request
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": json_prompt
}
],
max_tokens=100,
temperature=0.1,
response_format={"type": "json_object"}
)
return response.choices[0].message.content
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([1.0, 0.0, 0.0, 0.5])
if len(mask.shape) == 4:
mask = mask[0, 0]
mask_image = np.zeros((*mask.shape, 4), dtype=np.float32)
mask_image[mask > 0] = color
ax.imshow(mask_image)
def process_image_detection(image, target_label, surprise_rating):
device = "cuda" if torch.cuda.is_available() else "cpu"
# Get original image DPI and size
original_dpi = image.info.get('dpi', (72, 72))
original_size = image.size
# Calculate relative font size based on image dimensions
base_fontsize = min(original_size) / 40 # Adjust this divisor as needed
owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
sam_processor = AutoProcessor.from_pretrained("facebook/sam-vit-base")
sam_model = AutoModelForMaskGeneration.from_pretrained("facebook/sam-vit-base").to(device)
image_np = np.array(image)
inputs = owlv2_processor(text=[target_label], images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = owlv2_model(**inputs)
target_sizes = torch.tensor([image.size[::-1]]).to(device)
results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
dpi = 300 # Increased DPI for better text rendering
figsize = (original_size[0] / dpi, original_size[1] / dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.])
fig.add_axes(ax)
plt.imshow(image)
scores = results["scores"]
if len(scores) > 0:
max_score_idx = scores.argmax().item()
max_score = scores[max_score_idx].item()
if max_score > 0.2:
box = results["boxes"][max_score_idx].cpu().numpy()
sam_inputs = sam_processor(
image,
input_boxes=[[[box[0], box[1], box[2], box[3]]]],
return_tensors="pt"
).to(device)
with torch.no_grad():
sam_outputs = sam_model(**sam_inputs)
masks = sam_processor.image_processor.post_process_masks(
sam_outputs.pred_masks.cpu(),
sam_inputs["original_sizes"].cpu(),
sam_inputs["reshaped_input_sizes"].cpu()
)
mask = masks[0].numpy() if isinstance(masks[0], torch.Tensor) else masks[0]
show_mask(mask, ax=ax)
# Draw rectangle around the detected area
rect = patches.Rectangle(
(box[0], box[1]),
box[2] - box[0],
box[3] - box[1],
linewidth=max(2, min(original_size) / 500),
edgecolor='red',
facecolor='none'
)
ax.add_patch(rect)
# Confidence score
plt.text(
box[0], box[1] - base_fontsize,
f'{max_score:.2f}',
color='red',
fontsize=base_fontsize,
fontweight='bold',
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2)
)
# Label + rating
plt.text(
box[2] + base_fontsize / 2, box[1],
f'Unexpected (Rating: {surprise_rating}/5)\n{target_label}',
color='red',
fontsize=base_fontsize,
fontweight='bold',
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2),
verticalalignment='bottom'
)
plt.axis('off')
# Save figure to buffer
buf = io.BytesIO()
plt.savefig(
buf,
format='png',
dpi=dpi,
bbox_inches='tight',
pad_inches=0,
metadata={'dpi': original_dpi}
)
buf.seek(0)
plt.close()
# Convert buffer back to PIL
output_image = Image.open(buf)
output_image = output_image.resize(original_size, Image.Resampling.LANCZOS)
final_buf = io.BytesIO()
output_image.save(final_buf, format='PNG', dpi=original_dpi)
final_buf.seek(0)
return final_buf
def process_and_analyze(image):
if image is None:
return None, "Please upload an image first."
if OPENAI_API_KEY is None:
return None, "OpenAI API key not found in environment variables."
try:
# Handle different input types
if isinstance(image, tuple):
image = image[0]
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
if not isinstance(image, Image.Image):
raise ValueError("Invalid image format")
# Analyze image with GPT
gpt_response = analyze_image(image)
response_data = json.loads(gpt_response)
# If surprising, try to detect the element
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
result_buf = process_image_detection(image, response_data["element"], response_data["rating"])
result_image = Image.open(result_buf)
analysis_text = (
f"Label: {response_data['label']}\n"
f"Element: {response_data['element']}\n"
f"Rating: {response_data['rating']}/5"
)
return result_image, analysis_text
else:
# If not surprising or element=NA
return image, "Not Surprising"
except Exception as e:
return None, f"Error processing image: {str(e)}"
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("# Image Surprise Analysis")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload Image")
analyze_btn = gr.Button("Analyze Image")
with gr.Column():
output_image = gr.Image(label="Processed Image")
output_text = gr.Textbox(label="Analysis Results")
analyze_btn.click(
fn=process_and_analyze,
inputs=[input_image],
outputs=[output_image, output_text]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()
|