Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
import requests
|
4 |
-
import
|
5 |
from transformers import (Owlv2Processor, Owlv2ForObjectDetection,
|
6 |
-
AutoProcessor, AutoModelForMaskGeneration
|
7 |
-
BlipProcessor, BlipForConditionalGeneration)
|
8 |
import matplotlib.pyplot as plt
|
9 |
import matplotlib.patches as patches
|
10 |
import base64
|
@@ -18,50 +17,198 @@ from dotenv import load_dotenv
|
|
18 |
# Load environment variables
|
19 |
load_dotenv()
|
20 |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
21 |
-
openai.api_key = OPENAI_API_KEY
|
22 |
|
23 |
-
def generate_image_caption(image):
|
24 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
25 |
-
processor = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-base')
|
26 |
-
model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base').to(device)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
"role": "user",
|
37 |
-
"content": f"""Your task is to determine if the following image description is surprising or not surprising.
|
38 |
|
39 |
-
|
|
|
|
|
40 |
|
41 |
-
|
|
|
|
|
42 |
|
43 |
-
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
{
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
}
|
53 |
]
|
54 |
|
55 |
-
response =
|
56 |
-
model="gpt-
|
57 |
messages=messages,
|
58 |
max_tokens=100,
|
59 |
-
temperature=0.1
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
return response.choices[0].message.content
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
def process_and_analyze(image):
|
67 |
if image is None:
|
@@ -79,11 +226,8 @@ def process_and_analyze(image):
|
|
79 |
if not isinstance(image, Image.Image):
|
80 |
raise ValueError("Invalid image format")
|
81 |
|
82 |
-
#
|
83 |
-
|
84 |
-
|
85 |
-
# Analyze caption
|
86 |
-
gpt_response = analyze_caption(caption)
|
87 |
response_data = json.loads(gpt_response)
|
88 |
|
89 |
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
|
@@ -97,6 +241,7 @@ def process_and_analyze(image):
|
|
97 |
except Exception as e:
|
98 |
return None, f"Error processing image: {str(e)}"
|
99 |
|
|
|
100 |
# Create Gradio interface
|
101 |
def create_interface():
|
102 |
with gr.Blocks() as demo:
|
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
import requests
|
4 |
+
from openai import OpenAI
|
5 |
from transformers import (Owlv2Processor, Owlv2ForObjectDetection,
|
6 |
+
AutoProcessor, AutoModelForMaskGeneration)
|
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
import matplotlib.patches as patches
|
9 |
import base64
|
|
|
17 |
# Load environment variables
|
18 |
load_dotenv()
|
19 |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
|
|
20 |
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
def encode_image_to_base64(image):
|
23 |
+
# If image is a tuple (as sometimes provided by Gradio), take the first element
|
24 |
+
if isinstance(image, tuple):
|
25 |
+
image = image[0]
|
26 |
|
27 |
+
# If image is a numpy array, convert to PIL Image
|
28 |
+
if isinstance(image, np.ndarray):
|
29 |
+
image = Image.fromarray(image)
|
|
|
|
|
30 |
|
31 |
+
# Ensure image is in PIL Image format
|
32 |
+
if not isinstance(image, Image.Image):
|
33 |
+
raise ValueError("Input must be a PIL Image, numpy array, or tuple containing an image")
|
34 |
|
35 |
+
buffered = io.BytesIO()
|
36 |
+
image.save(buffered, format="PNG")
|
37 |
+
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
38 |
|
39 |
+
def analyze_image(image):
|
40 |
+
client = OpenAI(api_key=OPENAI_API_KEY)
|
41 |
+
base64_image = encode_image_to_base64(image)
|
42 |
|
43 |
+
messages = [
|
44 |
+
{
|
45 |
+
"role": "user",
|
46 |
+
"content": [
|
47 |
+
{
|
48 |
+
"type": "text",
|
49 |
+
"text": """Your task is to determine if the image is surprising or not surprising.
|
50 |
+
if the image is surprising, determine which element, figure or object in the image is making the image surprising and write it only in one sentence with no more then 6 words, otherwise, write 'NA'.
|
51 |
+
Also rate how surprising the image is on a scale of 1-5, where 1 is not surprising at all and 5 is highly surprising.
|
52 |
+
Provide the response as a JSON with the following structure:
|
53 |
+
{
|
54 |
+
"label": "[surprising OR not surprising]",
|
55 |
+
"element": "[element]",
|
56 |
+
"rating": [1-5]
|
57 |
+
}"""
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"type": "image_url",
|
61 |
+
"image_url": {
|
62 |
+
"url": f"data:image/jpeg;base64,{base64_image}"
|
63 |
+
}
|
64 |
+
}
|
65 |
+
]
|
66 |
}
|
67 |
]
|
68 |
|
69 |
+
response = client.chat.completions.create(
|
70 |
+
model="gpt-4o-mini",
|
71 |
messages=messages,
|
72 |
max_tokens=100,
|
73 |
+
temperature=0.1,
|
74 |
+
response_format={
|
75 |
+
"type": "json_object"
|
76 |
+
}
|
77 |
)
|
78 |
|
79 |
return response.choices[0].message.content
|
80 |
|
81 |
+
|
82 |
+
def show_mask(mask, ax, random_color=False):
|
83 |
+
if random_color:
|
84 |
+
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
85 |
+
else:
|
86 |
+
color = np.array([1.0, 0.0, 0.0, 0.5])
|
87 |
+
|
88 |
+
if len(mask.shape) == 4:
|
89 |
+
mask = mask[0, 0]
|
90 |
+
|
91 |
+
mask_image = np.zeros((*mask.shape, 4), dtype=np.float32)
|
92 |
+
mask_image[mask > 0] = color
|
93 |
+
|
94 |
+
ax.imshow(mask_image)
|
95 |
+
|
96 |
+
|
97 |
+
def process_image_detection(image, target_label, surprise_rating):
|
98 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
99 |
+
|
100 |
+
# Get original image DPI and size
|
101 |
+
original_dpi = image.info.get('dpi', (72, 72))
|
102 |
+
original_size = image.size
|
103 |
+
|
104 |
+
# Calculate relative font size based on image dimensions
|
105 |
+
base_fontsize = min(original_size) / 40 # Adjust this divisor to change overall font size
|
106 |
+
|
107 |
+
owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
|
108 |
+
owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
|
109 |
+
|
110 |
+
sam_processor = AutoProcessor.from_pretrained("facebook/sam-vit-base")
|
111 |
+
sam_model = AutoModelForMaskGeneration.from_pretrained("facebook/sam-vit-base").to(device)
|
112 |
+
|
113 |
+
image_np = np.array(image)
|
114 |
+
|
115 |
+
inputs = owlv2_processor(text=[target_label], images=image, return_tensors="pt").to(device)
|
116 |
+
with torch.no_grad():
|
117 |
+
outputs = owlv2_model(**inputs)
|
118 |
+
|
119 |
+
target_sizes = torch.tensor([image.size[::-1]]).to(device)
|
120 |
+
results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
|
121 |
+
|
122 |
+
dpi = 300 # Increased DPI for better text rendering
|
123 |
+
figsize = (original_size[0] / dpi, original_size[1] / dpi)
|
124 |
+
fig = plt.figure(figsize=figsize, dpi=dpi)
|
125 |
+
|
126 |
+
ax = plt.Axes(fig, [0., 0., 1., 1.])
|
127 |
+
fig.add_axes(ax)
|
128 |
+
|
129 |
+
plt.imshow(image)
|
130 |
+
|
131 |
+
scores = results["scores"]
|
132 |
+
if len(scores) > 0:
|
133 |
+
max_score_idx = scores.argmax().item()
|
134 |
+
max_score = scores[max_score_idx].item()
|
135 |
+
|
136 |
+
if max_score > 0.2:
|
137 |
+
box = results["boxes"][max_score_idx].cpu().numpy()
|
138 |
+
|
139 |
+
sam_inputs = sam_processor(
|
140 |
+
image,
|
141 |
+
input_boxes=[[[box[0], box[1], box[2], box[3]]]],
|
142 |
+
return_tensors="pt"
|
143 |
+
).to(device)
|
144 |
+
|
145 |
+
with torch.no_grad():
|
146 |
+
sam_outputs = sam_model(**sam_inputs)
|
147 |
+
|
148 |
+
masks = sam_processor.image_processor.post_process_masks(
|
149 |
+
sam_outputs.pred_masks.cpu(),
|
150 |
+
sam_inputs["original_sizes"].cpu(),
|
151 |
+
sam_inputs["reshaped_input_sizes"].cpu()
|
152 |
+
)
|
153 |
+
|
154 |
+
mask = masks[0].numpy() if isinstance(masks[0], torch.Tensor) else masks[0]
|
155 |
+
show_mask(mask, ax=ax)
|
156 |
+
|
157 |
+
# Draw rectangle with increased line width
|
158 |
+
rect = patches.Rectangle(
|
159 |
+
(box[0], box[1]),
|
160 |
+
box[2] - box[0],
|
161 |
+
box[3] - box[1],
|
162 |
+
linewidth=max(2, min(original_size) / 500), # Scale line width with image size
|
163 |
+
edgecolor='red',
|
164 |
+
facecolor='none'
|
165 |
+
)
|
166 |
+
ax.add_patch(rect)
|
167 |
+
|
168 |
+
# Add confidence score with improved visibility
|
169 |
+
plt.text(
|
170 |
+
box[0], box[1] - base_fontsize,
|
171 |
+
f'{max_score:.2f}',
|
172 |
+
color='red',
|
173 |
+
fontsize=base_fontsize,
|
174 |
+
fontweight='bold',
|
175 |
+
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2)
|
176 |
+
)
|
177 |
+
|
178 |
+
# Add label and rating with improved visibility
|
179 |
+
plt.text(
|
180 |
+
box[2] + base_fontsize / 2, box[1],
|
181 |
+
f'Unexpected (Rating: {surprise_rating}/5)\n{target_label}',
|
182 |
+
color='red',
|
183 |
+
fontsize=base_fontsize,
|
184 |
+
fontweight='bold',
|
185 |
+
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2),
|
186 |
+
verticalalignment='bottom'
|
187 |
+
)
|
188 |
+
|
189 |
+
plt.axis('off')
|
190 |
+
|
191 |
+
# Save with high DPI
|
192 |
+
buf = io.BytesIO()
|
193 |
+
plt.savefig(buf,
|
194 |
+
format='png',
|
195 |
+
dpi=dpi,
|
196 |
+
bbox_inches='tight',
|
197 |
+
pad_inches=0,
|
198 |
+
metadata={'dpi': original_dpi})
|
199 |
+
buf.seek(0)
|
200 |
+
plt.close()
|
201 |
+
|
202 |
+
# Process final image
|
203 |
+
output_image = Image.open(buf)
|
204 |
+
output_image = output_image.resize(original_size, Image.Resampling.LANCZOS)
|
205 |
+
|
206 |
+
final_buf = io.BytesIO()
|
207 |
+
output_image.save(final_buf, format='PNG', dpi=original_dpi)
|
208 |
+
final_buf.seek(0)
|
209 |
+
|
210 |
+
return final_buf
|
211 |
+
|
212 |
|
213 |
def process_and_analyze(image):
|
214 |
if image is None:
|
|
|
226 |
if not isinstance(image, Image.Image):
|
227 |
raise ValueError("Invalid image format")
|
228 |
|
229 |
+
# Analyze image
|
230 |
+
gpt_response = analyze_image(image)
|
|
|
|
|
|
|
231 |
response_data = json.loads(gpt_response)
|
232 |
|
233 |
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
|
|
|
241 |
except Exception as e:
|
242 |
return None, f"Error processing image: {str(e)}"
|
243 |
|
244 |
+
|
245 |
# Create Gradio interface
|
246 |
def create_interface():
|
247 |
with gr.Blocks() as demo:
|