Update app.py
Browse files
app.py
CHANGED
@@ -86,6 +86,10 @@ def show_mask(mask, ax, random_color=False):
|
|
86 |
def process_image_detection(image, target_label, surprise_rating):
|
87 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
88 |
|
|
|
|
|
|
|
|
|
89 |
owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-large-patch14")
|
90 |
owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-large-patch14").to(device)
|
91 |
|
@@ -101,9 +105,16 @@ def process_image_detection(image, target_label, surprise_rating):
|
|
101 |
target_sizes = torch.tensor([image.size[::-1]]).to(device)
|
102 |
results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
|
103 |
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
plt.imshow(image)
|
106 |
-
ax = plt.gca()
|
107 |
|
108 |
scores = results["scores"]
|
109 |
if len(scores) > 0:
|
@@ -157,12 +168,26 @@ def process_image_detection(image, target_label, surprise_rating):
|
|
157 |
|
158 |
plt.axis('off')
|
159 |
|
|
|
160 |
buf = io.BytesIO()
|
161 |
-
plt.savefig(buf,
|
|
|
|
|
|
|
|
|
162 |
buf.seek(0)
|
163 |
plt.close()
|
164 |
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
|
168 |
def process_and_analyze(image):
|
@@ -181,15 +206,14 @@ def process_and_analyze(image):
|
|
181 |
gpt_response = analyze_image(image)
|
182 |
response_data = json.loads(gpt_response)
|
183 |
|
184 |
-
analysis_text = f"Label: {response_data['label']}\nElement: {response_data['element']}\nRating: {response_data['rating']}/5"
|
185 |
-
|
186 |
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
|
187 |
# Process image with detection models
|
188 |
result_buf = process_image_detection(image, response_data["element"], response_data["rating"])
|
189 |
result_image = Image.open(result_buf)
|
|
|
190 |
return result_image, analysis_text
|
191 |
else:
|
192 |
-
return image,
|
193 |
|
194 |
except Exception as e:
|
195 |
return None, f"Error processing image: {str(e)}"
|
|
|
86 |
def process_image_detection(image, target_label, surprise_rating):
|
87 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
88 |
|
89 |
+
# Get original image DPI and size
|
90 |
+
original_dpi = image.info.get('dpi', (72, 72)) # Default to 72 DPI if not specified
|
91 |
+
original_size = image.size
|
92 |
+
|
93 |
owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-large-patch14")
|
94 |
owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-large-patch14").to(device)
|
95 |
|
|
|
105 |
target_sizes = torch.tensor([image.size[::-1]]).to(device)
|
106 |
results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
|
107 |
|
108 |
+
# Create figure with the exact pixel size of the original image
|
109 |
+
dpi = 100 # Base DPI for calculation
|
110 |
+
figsize = (original_size[0] / dpi, original_size[1] / dpi)
|
111 |
+
fig = plt.figure(figsize=figsize, dpi=dpi)
|
112 |
+
|
113 |
+
# Remove margins and spacing
|
114 |
+
ax = plt.Axes(fig, [0., 0., 1., 1.])
|
115 |
+
fig.add_axes(ax)
|
116 |
+
|
117 |
plt.imshow(image)
|
|
|
118 |
|
119 |
scores = results["scores"]
|
120 |
if len(scores) > 0:
|
|
|
168 |
|
169 |
plt.axis('off')
|
170 |
|
171 |
+
# Save with original resolution and DPI
|
172 |
buf = io.BytesIO()
|
173 |
+
plt.savefig(buf,
|
174 |
+
format='png',
|
175 |
+
dpi=dpi,
|
176 |
+
bbox_inches='tight',
|
177 |
+
pad_inches=0)
|
178 |
buf.seek(0)
|
179 |
plt.close()
|
180 |
|
181 |
+
# Open the buffer and create a new image with original properties
|
182 |
+
output_image = Image.open(buf)
|
183 |
+
output_image = output_image.resize(original_size, Image.Resampling.LANCZOS)
|
184 |
+
|
185 |
+
# Create a new buffer with the properly sized image
|
186 |
+
final_buf = io.BytesIO()
|
187 |
+
output_image.save(final_buf, format='PNG', dpi=original_dpi)
|
188 |
+
final_buf.seek(0)
|
189 |
+
|
190 |
+
return final_buf
|
191 |
|
192 |
|
193 |
def process_and_analyze(image):
|
|
|
206 |
gpt_response = analyze_image(image)
|
207 |
response_data = json.loads(gpt_response)
|
208 |
|
|
|
|
|
209 |
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
|
210 |
# Process image with detection models
|
211 |
result_buf = process_image_detection(image, response_data["element"], response_data["rating"])
|
212 |
result_image = Image.open(result_buf)
|
213 |
+
analysis_text = f"Label: {response_data['label']}\nElement: {response_data['element']}\nRating: {response_data['rating']}/5"
|
214 |
return result_image, analysis_text
|
215 |
else:
|
216 |
+
return image, "Not Surprising"
|
217 |
|
218 |
except Exception as e:
|
219 |
return None, f"Error processing image: {str(e)}"
|