Update app.py
Browse files
app.py
CHANGED
@@ -19,42 +19,48 @@ load_dotenv()
|
|
19 |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
20 |
|
21 |
|
22 |
-
def
|
23 |
-
|
24 |
-
if isinstance(image, tuple):
|
25 |
-
image = image[0]
|
26 |
-
|
27 |
-
# If image is a numpy array, convert to PIL Image
|
28 |
-
if isinstance(image, np.ndarray):
|
29 |
-
image = Image.fromarray(image)
|
30 |
-
|
31 |
-
# Ensure image is in PIL Image format
|
32 |
if not isinstance(image, Image.Image):
|
33 |
-
raise ValueError("Input must be a PIL Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
buffered = io.BytesIO()
|
36 |
-
|
|
|
|
|
37 |
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
38 |
|
39 |
-
|
40 |
def analyze_image(image):
|
41 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
42 |
-
base64_image = encode_image_to_base64(image)
|
43 |
|
44 |
-
#
|
|
|
|
|
|
|
45 |
prompt_dict = [
|
46 |
{
|
47 |
"type": "text",
|
48 |
-
"text": """Your task is to determine if the image is surprising or not
|
49 |
-
If the image is surprising,
|
50 |
-
Otherwise,
|
51 |
-
|
52 |
-
Provide the response as a JSON with the following structure:
|
53 |
{
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
}
|
|
|
58 |
},
|
59 |
{
|
60 |
"type": "image_url",
|
@@ -64,15 +70,16 @@ def analyze_image(image):
|
|
64 |
}
|
65 |
]
|
66 |
|
67 |
-
# JSON-encode
|
68 |
json_prompt = json.dumps(prompt_dict)
|
69 |
|
|
|
70 |
response = client.chat.completions.create(
|
71 |
model="gpt-4o-mini",
|
72 |
messages=[
|
73 |
{
|
74 |
"role": "user",
|
75 |
-
"content": json_prompt
|
76 |
}
|
77 |
],
|
78 |
max_tokens=100,
|
@@ -83,6 +90,7 @@ def analyze_image(image):
|
|
83 |
return response.choices[0].message.content
|
84 |
|
85 |
|
|
|
86 |
def show_mask(mask, ax, random_color=False):
|
87 |
if random_color:
|
88 |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
|
|
19 |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
20 |
|
21 |
|
22 |
+
def resize_and_compress(image, max_width=800, max_height=800, quality=50):
|
23 |
+
"""Resize (if > max_width/height) and compress the image to keep Base64 under ~1MB."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
if not isinstance(image, Image.Image):
|
25 |
+
raise ValueError("Input must be a PIL Image")
|
26 |
+
|
27 |
+
width, height = image.size
|
28 |
+
if width > max_width or height > max_height:
|
29 |
+
aspect_ratio = width / height
|
30 |
+
if aspect_ratio > 1:
|
31 |
+
new_width = max_width
|
32 |
+
new_height = int(new_width / aspect_ratio)
|
33 |
+
else:
|
34 |
+
new_height = max_height
|
35 |
+
new_width = int(new_height * aspect_ratio)
|
36 |
+
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
37 |
|
38 |
buffered = io.BytesIO()
|
39 |
+
# Save as JPEG with reduced quality
|
40 |
+
image.save(buffered, format="JPEG", quality=quality)
|
41 |
+
buffered.seek(0)
|
42 |
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
43 |
|
|
|
44 |
def analyze_image(image):
|
45 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
|
|
46 |
|
47 |
+
# Step 1: Resize + compress to keep the Base64 string under 1 MB
|
48 |
+
base64_image = resize_and_compress(image, max_width=800, max_height=800, quality=50)
|
49 |
+
|
50 |
+
# Build the list-of-dicts prompt
|
51 |
prompt_dict = [
|
52 |
{
|
53 |
"type": "text",
|
54 |
+
"text": """Your task is to determine if the image is surprising or not.
|
55 |
+
If the image is surprising, which element is surprising (max 6 words).
|
56 |
+
Otherwise, 'NA'. Also rate how surprising (1-5).
|
57 |
+
Return JSON like:
|
|
|
58 |
{
|
59 |
+
"label": "[surprising or not surprising]",
|
60 |
+
"element": "[element]",
|
61 |
+
"rating": [1-5]
|
62 |
+
}
|
63 |
+
"""
|
64 |
},
|
65 |
{
|
66 |
"type": "image_url",
|
|
|
70 |
}
|
71 |
]
|
72 |
|
73 |
+
# JSON-encode to ensure content is a string
|
74 |
json_prompt = json.dumps(prompt_dict)
|
75 |
|
76 |
+
# Send request
|
77 |
response = client.chat.completions.create(
|
78 |
model="gpt-4o-mini",
|
79 |
messages=[
|
80 |
{
|
81 |
"role": "user",
|
82 |
+
"content": json_prompt
|
83 |
}
|
84 |
],
|
85 |
max_tokens=100,
|
|
|
90 |
return response.choices[0].message.content
|
91 |
|
92 |
|
93 |
+
|
94 |
def show_mask(mask, ax, random_color=False):
|
95 |
if random_color:
|
96 |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|