File size: 9,072 Bytes
13d7bed a27e6f2 13d7bed a27e6f2 13d7bed f8ce6ee a27e6f2 f8ce6ee 13d7bed a27e6f2 f8ce6ee a27e6f2 1f43f91 a27e6f2 f8ce6ee 13d7bed f8ce6ee 8dbbc99 f8ce6ee 3da6b4f a27e6f2 8dbbc99 f8ce6ee 13d7bed a27e6f2 f8ce6ee 13d7bed a27e6f2 f8ce6ee a27e6f2 f8ce6ee a27e6f2 f8ce6ee a27e6f2 8dbbc99 a27e6f2 f8ce6ee a27e6f2 f8ce6ee a27e6f2 8dbbc99 a27e6f2 f8ce6ee a27e6f2 f8ce6ee a27e6f2 13d7bed fcba7cb f8ce6ee fcba7cb f8ce6ee a27e6f2 13d7bed 8dbbc99 13d7bed b7b543a 13d7bed a27e6f2 8dbbc99 6ab9894 13d7bed 6ab9894 8dbbc99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import torch
from PIL import Image
import requests
from openai import OpenAI
from transformers import (Owlv2Processor, Owlv2ForObjectDetection,
AutoProcessor, AutoModelForMaskGeneration)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import base64
import io
import numpy as np
import gradio as gr
import json
import os
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
def encode_image_to_base64(image):
# If image is a tuple (as sometimes provided by Gradio), take the first element
if isinstance(image, tuple):
image = image[0]
# If image is a numpy array, convert to PIL Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Ensure image is in PIL Image format
if not isinstance(image, Image.Image):
raise ValueError("Input must be a PIL Image, numpy array, or tuple containing an image")
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def analyze_image(image):
client = OpenAI(api_key=OPENAI_API_KEY)
base64_image = encode_image_to_base64(image)
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": """Your task is to determine if the image is surprising or not surprising.
if the image is surprising, determine which element, figure or object in the image is making the image surprising and write it only in one sentence with no more then 6 words, otherwise, write 'NA'.
Also rate how surprising the image is on a scale of 1-5, where 1 is not surprising at all and 5 is highly surprising.
Provide the response as a JSON with the following structure:
{
"label": "[surprising OR not surprising]",
"element": "[element]",
"rating": [1-5]
}"""
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
]
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
max_tokens=100,
temperature=0.1,
response_format={
"type": "json_object"
}
)
return response.choices[0].message.content
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([1.0, 0.0, 0.0, 0.5])
if len(mask.shape) == 4:
mask = mask[0, 0]
mask_image = np.zeros((*mask.shape, 4), dtype=np.float32)
mask_image[mask > 0] = color
ax.imshow(mask_image)
def process_image_detection(image, target_label, surprise_rating):
device = "cuda" if torch.cuda.is_available() else "cpu"
# Get original image DPI and size
original_dpi = image.info.get('dpi', (72, 72))
original_size = image.size
# Calculate relative font size based on image dimensions
base_fontsize = min(original_size) / 40 # Adjust this divisor to change overall font size
owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
sam_processor = AutoProcessor.from_pretrained("facebook/sam-vit-base")
sam_model = AutoModelForMaskGeneration.from_pretrained("facebook/sam-vit-base").to(device)
image_np = np.array(image)
inputs = owlv2_processor(text=[target_label], images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = owlv2_model(**inputs)
target_sizes = torch.tensor([image.size[::-1]]).to(device)
results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
dpi = 300 # Increased DPI for better text rendering
figsize = (original_size[0] / dpi, original_size[1] / dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.])
fig.add_axes(ax)
plt.imshow(image)
scores = results["scores"]
if len(scores) > 0:
max_score_idx = scores.argmax().item()
max_score = scores[max_score_idx].item()
if max_score > 0.2:
box = results["boxes"][max_score_idx].cpu().numpy()
sam_inputs = sam_processor(
image,
input_boxes=[[[box[0], box[1], box[2], box[3]]]],
return_tensors="pt"
).to(device)
with torch.no_grad():
sam_outputs = sam_model(**sam_inputs)
masks = sam_processor.image_processor.post_process_masks(
sam_outputs.pred_masks.cpu(),
sam_inputs["original_sizes"].cpu(),
sam_inputs["reshaped_input_sizes"].cpu()
)
mask = masks[0].numpy() if isinstance(masks[0], torch.Tensor) else masks[0]
show_mask(mask, ax=ax)
# Draw rectangle with increased line width
rect = patches.Rectangle(
(box[0], box[1]),
box[2] - box[0],
box[3] - box[1],
linewidth=max(2, min(original_size) / 500), # Scale line width with image size
edgecolor='red',
facecolor='none'
)
ax.add_patch(rect)
# Add confidence score with improved visibility
plt.text(
box[0], box[1] - base_fontsize,
f'{max_score:.2f}',
color='red',
fontsize=base_fontsize,
fontweight='bold',
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2)
)
# Add label and rating with improved visibility
plt.text(
box[2] + base_fontsize / 2, box[1],
f'Unexpected (Rating: {surprise_rating}/5)\n{target_label}',
color='red',
fontsize=base_fontsize,
fontweight='bold',
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2),
verticalalignment='bottom'
)
plt.axis('off')
# Save with high DPI
buf = io.BytesIO()
plt.savefig(buf,
format='png',
dpi=dpi,
bbox_inches='tight',
pad_inches=0,
metadata={'dpi': original_dpi})
buf.seek(0)
plt.close()
# Process final image
output_image = Image.open(buf)
output_image = output_image.resize(original_size, Image.Resampling.LANCZOS)
final_buf = io.BytesIO()
output_image.save(final_buf, format='PNG', dpi=original_dpi)
final_buf.seek(0)
return final_buf
def process_and_analyze(image):
if image is None:
return None, "Please upload an image first."
if OPENAI_API_KEY is None:
return None, "OpenAI API key not found in environment variables."
try:
# Handle different input types
if isinstance(image, tuple):
image = image[0] # Take the first element if it's a tuple
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
if not isinstance(image, Image.Image):
raise ValueError("Invalid image format")
# Analyze image
gpt_response = analyze_image(image)
response_data = json.loads(gpt_response)
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
result_buf = process_image_detection(image, response_data["element"], response_data["rating"])
result_image = Image.open(result_buf)
analysis_text = f"Label: {response_data['label']}\nElement: {response_data['element']}\nRating: {response_data['rating']}/5"
return result_image, analysis_text
else:
return image, "Not Surprising"
except Exception as e:
return None, f"Error processing image: {str(e)}"
# Create Gradio interface
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("# Image Surprise Analysis")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload Image")
analyze_btn = gr.Button("Analyze Image")
with gr.Column():
output_image = gr.Image(label="Processed Image")
output_text = gr.Textbox(label="Analysis Results")
analyze_btn.click(
fn=process_and_analyze,
inputs=[input_image],
outputs=[output_image, output_text]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch() |