reab5555 commited on
Commit
8dbbc99
·
verified ·
1 Parent(s): f8ce6ee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -36
app.py CHANGED
@@ -36,46 +36,38 @@ def encode_image_to_base64(image):
36
  image.save(buffered, format="PNG")
37
  return base64.b64encode(buffered.getvalue()).decode('utf-8')
38
 
39
-
40
  def analyze_image(image):
41
  client = OpenAI(api_key=OPENAI_API_KEY)
42
  base64_image = encode_image_to_base64(image)
43
 
44
- # --- MINIMAL FIX START ---
45
- # We build a Python list of dicts, then JSON-encode it:
46
- prompt_list = [
47
- {
48
- "type": "text",
49
- "text": """Your task is to determine if the image is surprising or not surprising.
50
- if the image is surprising, determine which element, figure or object in the image is making the image surprising and write it only in one sentence with no more then 6 words, otherwise, write 'NA'.
51
- Also rate how surprising the image is on a scale of 1-5, where 1 is not surprising at all and 5 is highly surprising.
52
- Provide the response as a JSON with the following structure:
53
- {
54
- "label": "[surprising OR not surprising]",
55
- "element": "[element]",
56
- "rating": [1-5]
57
- }"""
58
- },
59
- {
60
- "type": "image_url",
61
- "image_url": {
62
- "url": f"data:image/jpeg;base64,{base64_image}"
63
- }
64
- }
65
- ]
66
-
67
- prompt_json = json.dumps(prompt_list)
68
-
69
  messages = [
70
  {
71
  "role": "user",
72
- "content": prompt_json # content must be a single string
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  }
74
  ]
75
- # --- MINIMAL FIX END ---
76
 
77
  response = client.chat.completions.create(
78
- model="gpt-4o-mini", # or whichever model you have access to
79
  messages=messages,
80
  max_tokens=100,
81
  temperature=0.1,
@@ -167,7 +159,7 @@ def process_image_detection(image, target_label, surprise_rating):
167
  (box[0], box[1]),
168
  box[2] - box[0],
169
  box[3] - box[1],
170
- linewidth=max(2, min(original_size) / 500),
171
  edgecolor='red',
172
  facecolor='none'
173
  )
@@ -196,6 +188,7 @@ def process_image_detection(image, target_label, surprise_rating):
196
 
197
  plt.axis('off')
198
 
 
199
  buf = io.BytesIO()
200
  plt.savefig(buf,
201
  format='png',
@@ -240,11 +233,7 @@ def process_and_analyze(image):
240
  if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
241
  result_buf = process_image_detection(image, response_data["element"], response_data["rating"])
242
  result_image = Image.open(result_buf)
243
- analysis_text = (
244
- f"Label: {response_data['label']}\n"
245
- f"Element: {response_data['element']}\n"
246
- f"Rating: {response_data['rating']}/5"
247
- )
248
  return result_image, analysis_text
249
  else:
250
  return image, "Not Surprising"
@@ -253,6 +242,7 @@ def process_and_analyze(image):
253
  return None, f"Error processing image: {str(e)}"
254
 
255
 
 
256
  def create_interface():
257
  with gr.Blocks() as demo:
258
  gr.Markdown("# Image Surprise Analysis")
@@ -277,4 +267,4 @@ def create_interface():
277
 
278
  if __name__ == "__main__":
279
  demo = create_interface()
280
- demo.launch()
 
36
  image.save(buffered, format="PNG")
37
  return base64.b64encode(buffered.getvalue()).decode('utf-8')
38
 
 
39
  def analyze_image(image):
40
  client = OpenAI(api_key=OPENAI_API_KEY)
41
  base64_image = encode_image_to_base64(image)
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  messages = [
44
  {
45
  "role": "user",
46
+ "content": [
47
+ {
48
+ "type": "text",
49
+ "text": """Your task is to determine if the image is surprising or not surprising.
50
+ if the image is surprising, determine which element, figure or object in the image is making the image surprising and write it only in one sentence with no more then 6 words, otherwise, write 'NA'.
51
+ Also rate how surprising the image is on a scale of 1-5, where 1 is not surprising at all and 5 is highly surprising.
52
+ Provide the response as a JSON with the following structure:
53
+ {
54
+ "label": "[surprising OR not surprising]",
55
+ "element": "[element]",
56
+ "rating": [1-5]
57
+ }"""
58
+ },
59
+ {
60
+ "type": "image_url",
61
+ "image_url": {
62
+ "url": f"data:image/jpeg;base64,{base64_image}"
63
+ }
64
+ }
65
+ ]
66
  }
67
  ]
 
68
 
69
  response = client.chat.completions.create(
70
+ model="gpt-4o-mini",
71
  messages=messages,
72
  max_tokens=100,
73
  temperature=0.1,
 
159
  (box[0], box[1]),
160
  box[2] - box[0],
161
  box[3] - box[1],
162
+ linewidth=max(2, min(original_size) / 500), # Scale line width with image size
163
  edgecolor='red',
164
  facecolor='none'
165
  )
 
188
 
189
  plt.axis('off')
190
 
191
+ # Save with high DPI
192
  buf = io.BytesIO()
193
  plt.savefig(buf,
194
  format='png',
 
233
  if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
234
  result_buf = process_image_detection(image, response_data["element"], response_data["rating"])
235
  result_image = Image.open(result_buf)
236
+ analysis_text = f"Label: {response_data['label']}\nElement: {response_data['element']}\nRating: {response_data['rating']}/5"
 
 
 
 
237
  return result_image, analysis_text
238
  else:
239
  return image, "Not Surprising"
 
242
  return None, f"Error processing image: {str(e)}"
243
 
244
 
245
+ # Create Gradio interface
246
  def create_interface():
247
  with gr.Blocks() as demo:
248
  gr.Markdown("# Image Surprise Analysis")
 
267
 
268
  if __name__ == "__main__":
269
  demo = create_interface()
270
+ demo.launch()