FLUX-LoRA-DLC2 / app.py
prithivMLmods's picture
Update app.py
dddc2d6 verified
raw
history blame
11.5 kB
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import random
import time
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
from hi_diffusers.schedulers.flash_flow_match import FlashFlowMatchEulerDiscreteScheduler
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
from huggingface_hub import ModelCard
# Constants
MODEL_PREFIX = "HiDream-ai"
LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
FAST_MODEL_CONFIG = {
"path": f"{MODEL_PREFIX}/HiDream-I1-Full",
"guidance_scale": 5.0,
"num_inference_steps": 50,
"shift": 3.0,
"scheduler": FlowUniPCMultistepScheduler
}
RESOLUTION_OPTIONS = [
"1024 × 1024 (Square)",
"768 × 1360 (Portrait)",
"1360 × 768 (Landscape)",
"880 × 1168 (Portrait)",
"1168 × 880 (Landscape)",
"1248 × 832 (Landscape)",
"832 × 1248 (Portrait)"
]
# Load LoRAs from JSON file (assumed to be compatible with Hi-Dream)
with open('loras.json', 'r') as f:
loras = json.load(f)
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = 2**32 - 1
# Parse resolution string to height and width
def parse_resolution(res_str):
mapping = {
"1024 × 1024": (1024, 1024),
"768 × 1360": (768, 1360),
"1360 × 768": (1360, 768),
"880 × 1168": (880, 1168),
"1168 × 880": (1168, 880),
"1248 × 832": (1248, 832),
"832 × 1248": (832, 1248)
}
for key, (h, w) in mapping.items():
if key in res_str:
return h, w
return 1024, 1024 # fallback
# Load the Hi-Dream Fast Model pipeline
pipe, MODEL_CONFIG = None, None
def load_fast_model():
global pipe, MODEL_CONFIG
config = FAST_MODEL_CONFIG
scheduler = config["scheduler"](
num_train_timesteps=1000,
shift=config["shift"],
use_dynamic_shifting=False
)
tokenizer = PreTrainedTokenizerFast.from_pretrained(
LLAMA_MODEL_NAME,
use_fast=False
)
text_encoder = LlamaForCausalLM.from_pretrained(
LLAMA_MODEL_NAME,
output_hidden_states=True,
output_attentions=True,
torch_dtype=torch.bfloat16
).to(device)
transformer = HiDreamImageTransformer2DModel.from_pretrained(
config["path"],
subfolder="transformer",
torch_dtype=torch.bfloat16
).to(device)
pipe = HiDreamImagePipeline.from_pretrained(
config["path"],
scheduler=scheduler,
tokenizer_4=tokenizer,
text_encoder_4=text_encoder,
torch_dtype=torch.bfloat16
).to(device, torch.bfloat16)
pipe.transformer = transformer
MODEL_CONFIG = config
return pipe, config
# Generate image
def generate_image(prompt, resolution, seed, guidance_scale, num_inference_steps):
global pipe, MODEL_CONFIG
if pipe is None:
pipe, MODEL_CONFIG = load_fast_model()
height, width = parse_resolution(resolution)
if seed == -1 or seed is None:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(int(seed))
result = pipe(
prompt=prompt,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
generator=generator
)
return result.images[0], seed
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, resolution):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
resolution = "768 × 1360 (Portrait)"
elif selected_lora["aspect"] == "landscape":
resolution = "1360 × 768 (Landscape)"
else:
resolution = "1024 × 1024 (Square)"
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
resolution,
)
def run_lora(prompt, resolution, cfg_scale, steps, selected_index, randomize_seed, seed):
global pipe
if pipe is None:
pipe, _ = load_fast_model()
if selected_index is not None:
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
weight_name = selected_lora.get("weights", None)
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
pipe.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True)
trigger_word = selected_lora.get("trigger_word", "")
if trigger_word:
if "trigger_position" in selected_lora and selected_lora["trigger_position"] == "prepend":
prompt = f"{trigger_word} {prompt}"
else:
prompt = f"{prompt} {trigger_word}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
with calculateDuration("Generating image"):
final_image, used_seed = generate_image(prompt, resolution, seed, cfg_scale, steps)
return final_image, used_seed
def check_custom_model(link):
split_link = link.split("/")
if len(split_link) != 2:
raise Exception("Invalid Hugging Face repository link format.")
model_card = ModelCard.load(link)
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
safetensors_name = None # Simplified; assumes a safetensors file exists
return split_link[1], link, safetensors_name, trigger_word, image_url
def add_custom_lora(custom_lora):
global loras
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
card = f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found."}</small>
</div>
</div>
</div>
'''
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if not existing_item_index:
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
existing_item_index = len(loras)
loras.append(new_item)
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
gr.Warning(f"Invalid LoRA: {str(e)}")
return gr.update(visible=True, value=f"Invalid LoRA: {str(e)}"), gr.update(visible=True), gr.update(), "", None, ""
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora():
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
'''
font = [gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"]
with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(60, 60)) as app:
title = gr.HTML(
"""<h1>Hi-Dream Full LoRA DLC 🤩</h1>""",
elem_id="title",
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
with gr.Group():
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
gr.Markdown("[Check the list of Hi-Dream LoRAs]", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column():
result = gr.Image(label="Generated Image")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
cfg_scale = gr.Slider(label="Guidance Scale", minimum=0, maximum=20, step=0.1, value=FAST_MODEL_CONFIG["guidance_scale"])
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=FAST_MODEL_CONFIG["num_inference_steps"])
resolution = gr.Radio(
choices=RESOLUTION_OPTIONS,
value=RESOLUTION_OPTIONS[0],
label="Resolution"
)
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
gallery.select(
update_selection,
inputs=[resolution],
outputs=[prompt, selected_info, selected_index, resolution]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, resolution, cfg_scale, steps, selected_index, randomize_seed, seed],
outputs=[result, seed]
)
app.queue()
app.launch()