Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,329 +1,309 @@
|
|
1 |
import os
|
2 |
-
import random
|
3 |
-
import uuid
|
4 |
-
import json
|
5 |
-
import time
|
6 |
-
import asyncio
|
7 |
-
import re
|
8 |
-
from threading import Thread
|
9 |
-
|
10 |
import gradio as gr
|
11 |
-
import
|
|
|
12 |
import torch
|
13 |
-
import numpy as np
|
14 |
from PIL import Image
|
15 |
-
import
|
16 |
-
|
17 |
-
from
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
TextIteratorStreamer,
|
22 |
-
)
|
23 |
-
from transformers.image_utils import load_image
|
24 |
|
25 |
# Constants
|
26 |
-
|
27 |
-
|
28 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
29 |
-
MAX_SEED = np.iinfo(np.int32).max
|
30 |
-
|
31 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
</div>
|
41 |
-
</div>
|
42 |
-
<style>
|
43 |
-
@keyframes loading {{
|
44 |
-
0% {{ transform: translateX(-100%); }}
|
45 |
-
100% {{ transform: translateX(100%); }}
|
46 |
-
}}
|
47 |
-
</style>
|
48 |
-
'''
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
MODEL_ID_VL,
|
56 |
-
trust_remote_code=True,
|
57 |
-
torch_dtype=torch.float16
|
58 |
-
).to("cuda").eval()
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
for msg in chat_history:
|
63 |
-
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
64 |
-
cleaned.append(msg)
|
65 |
-
return cleaned
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
if i in prompt:
|
74 |
-
return True
|
75 |
-
for i in bad_words_negative:
|
76 |
-
if i in negative:
|
77 |
-
return True
|
78 |
-
return False
|
79 |
|
80 |
-
def
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
|
|
|
|
|
|
|
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
|
101 |
-
|
|
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
success, image = vidcap.read()
|
113 |
-
if success:
|
114 |
-
# Convert from BGR to RGB and then to PIL Image.
|
115 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
116 |
-
pil_image = Image.fromarray(image)
|
117 |
-
timestamp = round(i / fps, 2)
|
118 |
-
frames.append((pil_image, timestamp))
|
119 |
-
vidcap.release()
|
120 |
-
return frames
|
121 |
|
122 |
-
|
123 |
|
124 |
-
|
125 |
-
def
|
126 |
-
|
127 |
-
chat_history: list[dict],
|
128 |
-
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
|
129 |
-
temperature: float = 0.6,
|
130 |
-
top_p: float = 0.9,
|
131 |
-
top_k: int = 50,
|
132 |
-
repetition_penalty: float = 1.2,
|
133 |
-
):
|
134 |
-
text = input_dict["text"]
|
135 |
-
files = input_dict.get("files", [])
|
136 |
-
lower_text = text.lower().strip()
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
{"type": "text", "text": prompt_clean},
|
148 |
-
]
|
149 |
-
}]
|
150 |
-
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
151 |
-
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
|
152 |
else:
|
153 |
-
|
154 |
-
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
155 |
-
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
|
156 |
-
]
|
157 |
-
inputs = processor.apply_chat_template(
|
158 |
-
messages, add_generation_prompt=True, tokenize=True,
|
159 |
-
return_dict=True, return_tensors="pt"
|
160 |
-
).to("cuda", dtype=torch.float16)
|
161 |
-
streamer = TextIteratorStreamer(processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
162 |
-
generation_kwargs = {
|
163 |
-
**inputs,
|
164 |
-
"streamer": streamer,
|
165 |
-
"max_new_tokens": max_new_tokens,
|
166 |
-
"do_sample": True,
|
167 |
-
"temperature": temperature,
|
168 |
-
"top_p": top_p,
|
169 |
-
"top_k": top_k,
|
170 |
-
"repetition_penalty": repetition_penalty,
|
171 |
-
}
|
172 |
-
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
173 |
-
thread.start()
|
174 |
-
buffer = ""
|
175 |
-
yield progress_bar_html("Processing with Qwen2VL")
|
176 |
-
for new_text in streamer:
|
177 |
-
buffer += new_text
|
178 |
-
buffer = buffer.replace("<|im_end|>", "")
|
179 |
-
time.sleep(0.01)
|
180 |
-
yield buffer
|
181 |
-
return
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
194 |
-
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
|
195 |
-
]
|
196 |
-
# Append each frame (with its timestamp) to the conversation.
|
197 |
-
for frame in frames:
|
198 |
-
image, timestamp = frame
|
199 |
-
image_path = f"video_frame_{uuid.uuid4().hex}.png"
|
200 |
-
image.save(image_path)
|
201 |
-
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
202 |
-
messages[1]["content"].append({"type": "image", "url": image_path})
|
203 |
-
inputs = gemma3_processor.apply_chat_template(
|
204 |
-
messages, add_generation_prompt=True, tokenize=True,
|
205 |
-
return_dict=True, return_tensors="pt"
|
206 |
-
).to(gemma3_model.device, dtype=torch.bfloat16)
|
207 |
-
streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
208 |
-
generation_kwargs = {
|
209 |
-
**inputs,
|
210 |
-
"streamer": streamer,
|
211 |
-
"max_new_tokens": max_new_tokens,
|
212 |
-
"do_sample": True,
|
213 |
-
"temperature": temperature,
|
214 |
-
"top_p": top_p,
|
215 |
-
"top_k": top_k,
|
216 |
-
"repetition_penalty": repetition_penalty,
|
217 |
-
}
|
218 |
-
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
|
219 |
-
thread.start()
|
220 |
-
buffer = ""
|
221 |
-
yield progress_bar_html("Processing video with Gemma3")
|
222 |
-
for new_text in streamer:
|
223 |
-
buffer += new_text
|
224 |
-
time.sleep(0.01)
|
225 |
-
yield buffer
|
226 |
-
return
|
227 |
else:
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
"
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
"
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
[
|
308 |
-
|
309 |
-
|
310 |
-
[
|
311 |
-
|
312 |
-
[
|
313 |
-
[
|
314 |
-
|
315 |
-
[{"text": "What is in the video ?", "files": ["examples/redlight.mp4"]}],
|
316 |
-
["Python Program for Array Rotation"],
|
317 |
-
["Explain Critical Temperature of Substance"]
|
318 |
-
],
|
319 |
-
cache_examples=False,
|
320 |
-
type="messages",
|
321 |
-
description="# **Gemma 3 Multimodal** \n`Use @qwen2-vl to switch to Qwen2-VL OCR for image inference and @video-infer for video input`",
|
322 |
-
fill_height=True,
|
323 |
-
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="Tag with @qwen2-vl for Qwen2-VL inference if needed."),
|
324 |
-
stop_btn="Stop Generation",
|
325 |
-
multimodal=True,
|
326 |
-
)
|
327 |
|
328 |
-
|
329 |
-
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
import torch
|
|
|
6 |
from PIL import Image
|
7 |
+
import random
|
8 |
+
import time
|
9 |
+
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
|
10 |
+
from hi_diffusers.schedulers.flash_flow_match import FlashFlowMatchEulerDiscreteScheduler
|
11 |
+
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
|
12 |
+
from huggingface_hub import ModelCard
|
|
|
|
|
|
|
13 |
|
14 |
# Constants
|
15 |
+
MODEL_PREFIX = "HiDream-ai"
|
16 |
+
LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
FAST_MODEL_CONFIG = {
|
19 |
+
"path": f"{MODEL_PREFIX}/HiDream-I1-Full",
|
20 |
+
"guidance_scale": 5.0,
|
21 |
+
"num_inference_steps": 50,
|
22 |
+
"shift": 3.0,
|
23 |
+
"scheduler": FlowUniPCMultistepScheduler
|
24 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
RESOLUTION_OPTIONS = [
|
27 |
+
"1024 × 1024 (Square)",
|
28 |
+
"768 × 1360 (Portrait)",
|
29 |
+
"1360 × 768 (Landscape)",
|
30 |
+
"880 × 1168 (Portrait)",
|
31 |
+
"1168 × 880 (Landscape)",
|
32 |
+
"1248 × 832 (Landscape)",
|
33 |
+
"832 × 1248 (Portrait)"
|
34 |
+
]
|
35 |
|
36 |
+
# Load LoRAs from JSON file (assumed to be compatible with Hi-Dream)
|
37 |
+
with open('loras.json', 'r') as f:
|
38 |
+
loras = json.load(f)
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
+
MAX_SEED = 2**32 - 1
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Parse resolution string to height and width
|
44 |
+
def parse_resolution(res_str):
|
45 |
+
mapping = {
|
46 |
+
"1024 × 1024": (1024, 1024),
|
47 |
+
"768 × 1360": (768, 1360),
|
48 |
+
"1360 × 768": (1360, 768),
|
49 |
+
"880 × 1168": (880, 1168),
|
50 |
+
"1168 × 880": (1168, 880),
|
51 |
+
"1248 × 832": (1248, 832),
|
52 |
+
"832 × 1248": (832, 1248)
|
53 |
+
}
|
54 |
+
for key, (h, w) in mapping.items():
|
55 |
+
if key in res_str:
|
56 |
+
return h, w
|
57 |
+
return 1024, 1024 # fallback
|
58 |
|
59 |
+
# Load the Hi-Dream Fast Model pipeline
|
60 |
+
pipe, MODEL_CONFIG = None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
def load_fast_model():
|
63 |
+
global pipe, MODEL_CONFIG
|
64 |
+
config = FAST_MODEL_CONFIG
|
65 |
+
scheduler = config["scheduler"](
|
66 |
+
num_train_timesteps=1000,
|
67 |
+
shift=config["shift"],
|
68 |
+
use_dynamic_shifting=False
|
69 |
+
)
|
70 |
|
71 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained(
|
72 |
+
LLAMA_MODEL_NAME,
|
73 |
+
use_fast=False
|
74 |
+
)
|
75 |
+
text_encoder = LlamaForCausalLM.from_pretrained(
|
76 |
+
LLAMA_MODEL_NAME,
|
77 |
+
output_hidden_states=True,
|
78 |
+
output_attentions=True,
|
79 |
+
torch_dtype=torch.bfloat16
|
80 |
+
).to(device)
|
81 |
|
82 |
+
transformer = HiDreamImageTransformer2DModel.from_pretrained(
|
83 |
+
config["path"],
|
84 |
+
subfolder="transformer",
|
85 |
+
torch_dtype=torch.bfloat16
|
86 |
+
).to(device)
|
87 |
|
88 |
+
pipe = HiDreamImagePipeline.from_pretrained(
|
89 |
+
config["path"],
|
90 |
+
scheduler=scheduler,
|
91 |
+
tokenizer_4=tokenizer,
|
92 |
+
text_encoder_4=text_encoder,
|
93 |
+
torch_dtype=torch.bfloat16
|
94 |
+
).to(device, torch.bfloat16)
|
95 |
|
96 |
+
pipe.transformer = transformer
|
97 |
+
MODEL_CONFIG = config
|
98 |
+
return pipe, config
|
99 |
|
100 |
+
# Generate image
|
101 |
+
def generate_image(prompt, resolution, seed, guidance_scale, num_inference_steps):
|
102 |
+
global pipe, MODEL_CONFIG
|
103 |
+
if pipe is None:
|
104 |
+
pipe, MODEL_CONFIG = load_fast_model()
|
105 |
|
106 |
+
height, width = parse_resolution(resolution)
|
107 |
+
if seed == -1 or seed is None:
|
108 |
+
seed = random.randint(0, MAX_SEED)
|
109 |
+
generator = torch.Generator(device=device).manual_seed(int(seed))
|
110 |
|
111 |
+
result = pipe(
|
112 |
+
prompt=prompt,
|
113 |
+
height=height,
|
114 |
+
width=width,
|
115 |
+
guidance_scale=guidance_scale,
|
116 |
+
num_inference_steps=num_inference_steps,
|
117 |
+
num_images_per_prompt=1,
|
118 |
+
generator=generator
|
119 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
return result.images[0], seed
|
122 |
|
123 |
+
class calculateDuration:
|
124 |
+
def __init__(self, activity_name=""):
|
125 |
+
self.activity_name = activity_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
def __enter__(self):
|
128 |
+
self.start_time = time.time()
|
129 |
+
return self
|
130 |
+
|
131 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
132 |
+
self.end_time = time.time()
|
133 |
+
self.elapsed_time = self.end_time - self.start_time
|
134 |
+
if self.activity_name:
|
135 |
+
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
|
|
|
|
|
|
|
|
|
|
136 |
else:
|
137 |
+
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
+
def update_selection(evt: gr.SelectData, resolution):
|
140 |
+
selected_lora = loras[evt.index]
|
141 |
+
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
142 |
+
lora_repo = selected_lora["repo"]
|
143 |
+
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
|
144 |
+
if "aspect" in selected_lora:
|
145 |
+
if selected_lora["aspect"] == "portrait":
|
146 |
+
resolution = "768 × 1360 (Portrait)"
|
147 |
+
elif selected_lora["aspect"] == "landscape":
|
148 |
+
resolution = "1360 × 768 (Landscape)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
else:
|
150 |
+
resolution = "1024 × 1024 (Square)"
|
151 |
+
return (
|
152 |
+
gr.update(placeholder=new_placeholder),
|
153 |
+
updated_text,
|
154 |
+
evt.index,
|
155 |
+
resolution,
|
156 |
+
)
|
157 |
+
|
158 |
+
def run_lora(prompt, resolution, cfg_scale, steps, selected_index, randomize_seed, seed):
|
159 |
+
global pipe
|
160 |
+
if pipe is None:
|
161 |
+
pipe, _ = load_fast_model()
|
162 |
+
|
163 |
+
if selected_index is not None:
|
164 |
+
selected_lora = loras[selected_index]
|
165 |
+
lora_path = selected_lora["repo"]
|
166 |
+
weight_name = selected_lora.get("weights", None)
|
167 |
+
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
168 |
+
pipe.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True)
|
169 |
+
trigger_word = selected_lora.get("trigger_word", "")
|
170 |
+
if trigger_word:
|
171 |
+
if "trigger_position" in selected_lora and selected_lora["trigger_position"] == "prepend":
|
172 |
+
prompt = f"{trigger_word} {prompt}"
|
173 |
+
else:
|
174 |
+
prompt = f"{prompt} {trigger_word}"
|
175 |
+
|
176 |
+
if randomize_seed:
|
177 |
+
seed = random.randint(0, MAX_SEED)
|
178 |
+
|
179 |
+
with calculateDuration("Generating image"):
|
180 |
+
final_image, used_seed = generate_image(prompt, resolution, seed, cfg_scale, steps)
|
181 |
+
return final_image, used_seed
|
182 |
+
|
183 |
+
def check_custom_model(link):
|
184 |
+
split_link = link.split("/")
|
185 |
+
if len(split_link) != 2:
|
186 |
+
raise Exception("Invalid Hugging Face repository link format.")
|
187 |
+
model_card = ModelCard.load(link)
|
188 |
+
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
189 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
190 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
191 |
+
safetensors_name = None # Simplified; assumes a safetensors file exists
|
192 |
+
return split_link[1], link, safetensors_name, trigger_word, image_url
|
193 |
+
|
194 |
+
def add_custom_lora(custom_lora):
|
195 |
+
global loras
|
196 |
+
if custom_lora:
|
197 |
+
try:
|
198 |
+
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
|
199 |
+
card = f'''
|
200 |
+
<div class="custom_lora_card">
|
201 |
+
<span>Loaded custom LoRA:</span>
|
202 |
+
<div class="card_internal">
|
203 |
+
<img src="{image}" />
|
204 |
+
<div>
|
205 |
+
<h3>{title}</h3>
|
206 |
+
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found."}</small>
|
207 |
+
</div>
|
208 |
+
</div>
|
209 |
+
</div>
|
210 |
+
'''
|
211 |
+
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
|
212 |
+
if not existing_item_index:
|
213 |
+
new_item = {
|
214 |
+
"image": image,
|
215 |
+
"title": title,
|
216 |
+
"repo": repo,
|
217 |
+
"weights": path,
|
218 |
+
"trigger_word": trigger_word
|
219 |
+
}
|
220 |
+
existing_item_index = len(loras)
|
221 |
+
loras.append(new_item)
|
222 |
+
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
|
223 |
+
except Exception as e:
|
224 |
+
gr.Warning(f"Invalid LoRA: {str(e)}")
|
225 |
+
return gr.update(visible=True, value=f"Invalid LoRA: {str(e)}"), gr.update(visible=True), gr.update(), "", None, ""
|
226 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
227 |
+
|
228 |
+
def remove_custom_lora():
|
229 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
230 |
+
|
231 |
+
css = '''
|
232 |
+
#gen_btn{height: 100%}
|
233 |
+
#gen_column{align-self: stretch}
|
234 |
+
#title{text-align: center}
|
235 |
+
#title h1{font-size: 3em; display:inline-flex; align-items:center}
|
236 |
+
#title img{width: 100px; margin-right: 0.5em}
|
237 |
+
#gallery .grid-wrap{height: 10vh}
|
238 |
+
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
|
239 |
+
.card_internal{display: flex;height: 100px;margin-top: .5em}
|
240 |
+
.card_internal img{margin-right: 1em}
|
241 |
+
.styler{--form-gap-width: 0px !important}
|
242 |
+
'''
|
243 |
|
244 |
+
font = [gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"]
|
245 |
+
with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(60, 60)) as app:
|
246 |
+
title = gr.HTML(
|
247 |
+
"""<h1>Hi-Dream Full LoRA DLC 🤩</h1>""",
|
248 |
+
elem_id="title",
|
249 |
+
)
|
250 |
+
selected_index = gr.State(None)
|
251 |
+
with gr.Row():
|
252 |
+
with gr.Column(scale=3):
|
253 |
+
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
254 |
+
with gr.Column(scale=1, elem_id="gen_column"):
|
255 |
+
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
256 |
+
with gr.Row():
|
257 |
+
with gr.Column():
|
258 |
+
selected_info = gr.Markdown("")
|
259 |
+
gallery = gr.Gallery(
|
260 |
+
[(item["image"], item["title"]) for item in loras],
|
261 |
+
label="LoRA Gallery",
|
262 |
+
allow_preview=False,
|
263 |
+
columns=3,
|
264 |
+
elem_id="gallery",
|
265 |
+
show_share_button=False
|
266 |
+
)
|
267 |
+
with gr.Group():
|
268 |
+
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
|
269 |
+
gr.Markdown("[Check the list of Hi-Dream LoRAs]", elem_id="lora_list")
|
270 |
+
custom_lora_info = gr.HTML(visible=False)
|
271 |
+
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
272 |
+
with gr.Column():
|
273 |
+
result = gr.Image(label="Generated Image")
|
274 |
|
275 |
+
with gr.Row():
|
276 |
+
with gr.Accordion("Advanced Settings", open=False):
|
277 |
+
cfg_scale = gr.Slider(label="Guidance Scale", minimum=0, maximum=20, step=0.1, value=FAST_MODEL_CONFIG["guidance_scale"])
|
278 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=FAST_MODEL_CONFIG["num_inference_steps"])
|
279 |
+
resolution = gr.Radio(
|
280 |
+
choices=RESOLUTION_OPTIONS,
|
281 |
+
value=RESOLUTION_OPTIONS[0],
|
282 |
+
label="Resolution"
|
283 |
+
)
|
284 |
+
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
285 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
286 |
|
287 |
+
gallery.select(
|
288 |
+
update_selection,
|
289 |
+
inputs=[resolution],
|
290 |
+
outputs=[prompt, selected_info, selected_index, resolution]
|
291 |
+
)
|
292 |
+
custom_lora.input(
|
293 |
+
add_custom_lora,
|
294 |
+
inputs=[custom_lora],
|
295 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
|
296 |
+
)
|
297 |
+
custom_lora_button.click(
|
298 |
+
remove_custom_lora,
|
299 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
300 |
+
)
|
301 |
+
gr.on(
|
302 |
+
triggers=[generate_button.click, prompt.submit],
|
303 |
+
fn=run_lora,
|
304 |
+
inputs=[prompt, resolution, cfg_scale, steps, selected_index, randomize_seed, seed],
|
305 |
+
outputs=[result, seed]
|
306 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
|
308 |
+
app.queue()
|
309 |
+
app.launch()
|