import os import gradio as gr import json import logging import torch from PIL import Image import random import time from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel from hi_diffusers.schedulers.flash_flow_match import FlashFlowMatchEulerDiscreteScheduler from transformers import LlamaForCausalLM, PreTrainedTokenizerFast from huggingface_hub import ModelCard # Constants MODEL_PREFIX = "HiDream-ai" LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct" FAST_MODEL_CONFIG = { "path": f"{MODEL_PREFIX}/HiDream-I1-Full", "guidance_scale": 5.0, "num_inference_steps": 50, "shift": 3.0, "scheduler": FlowUniPCMultistepScheduler } RESOLUTION_OPTIONS = [ "1024 × 1024 (Square)", "768 × 1360 (Portrait)", "1360 × 768 (Landscape)", "880 × 1168 (Portrait)", "1168 × 880 (Landscape)", "1248 × 832 (Landscape)", "832 × 1248 (Portrait)" ] # Load LoRAs from JSON file (assumed to be compatible with Hi-Dream) with open('loras.json', 'r') as f: loras = json.load(f) device = "cuda" if torch.cuda.is_available() else "cpu" MAX_SEED = 2**32 - 1 # Parse resolution string to height and width def parse_resolution(res_str): mapping = { "1024 × 1024": (1024, 1024), "768 × 1360": (768, 1360), "1360 × 768": (1360, 768), "880 × 1168": (880, 1168), "1168 × 880": (1168, 880), "1248 × 832": (1248, 832), "832 × 1248": (832, 1248) } for key, (h, w) in mapping.items(): if key in res_str: return h, w return 1024, 1024 # fallback # Load the Hi-Dream Fast Model pipeline pipe, MODEL_CONFIG = None, None def load_fast_model(): global pipe, MODEL_CONFIG config = FAST_MODEL_CONFIG scheduler = config["scheduler"]( num_train_timesteps=1000, shift=config["shift"], use_dynamic_shifting=False ) tokenizer = PreTrainedTokenizerFast.from_pretrained( LLAMA_MODEL_NAME, use_fast=False ) text_encoder = LlamaForCausalLM.from_pretrained( LLAMA_MODEL_NAME, output_hidden_states=True, output_attentions=True, torch_dtype=torch.bfloat16 ).to(device) transformer = HiDreamImageTransformer2DModel.from_pretrained( config["path"], subfolder="transformer", torch_dtype=torch.bfloat16 ).to(device) pipe = HiDreamImagePipeline.from_pretrained( config["path"], scheduler=scheduler, tokenizer_4=tokenizer, text_encoder_4=text_encoder, torch_dtype=torch.bfloat16 ).to(device, torch.bfloat16) pipe.transformer = transformer MODEL_CONFIG = config return pipe, config # Generate image def generate_image(prompt, resolution, seed, guidance_scale, num_inference_steps): global pipe, MODEL_CONFIG if pipe is None: pipe, MODEL_CONFIG = load_fast_model() height, width = parse_resolution(resolution) if seed == -1 or seed is None: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(int(seed)) result = pipe( prompt=prompt, height=height, width=width, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, num_images_per_prompt=1, generator=generator ) return result.images[0], seed class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") def update_selection(evt: gr.SelectData, resolution): selected_lora = loras[evt.index] new_placeholder = f"Type a prompt for {selected_lora['title']}" lora_repo = selected_lora["repo"] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" if "aspect" in selected_lora: if selected_lora["aspect"] == "portrait": resolution = "768 × 1360 (Portrait)" elif selected_lora["aspect"] == "landscape": resolution = "1360 × 768 (Landscape)" else: resolution = "1024 × 1024 (Square)" return ( gr.update(placeholder=new_placeholder), updated_text, evt.index, resolution, ) def run_lora(prompt, resolution, cfg_scale, steps, selected_index, randomize_seed, seed): global pipe if pipe is None: pipe, _ = load_fast_model() if selected_index is not None: selected_lora = loras[selected_index] lora_path = selected_lora["repo"] weight_name = selected_lora.get("weights", None) with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): pipe.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True) trigger_word = selected_lora.get("trigger_word", "") if trigger_word: if "trigger_position" in selected_lora and selected_lora["trigger_position"] == "prepend": prompt = f"{trigger_word} {prompt}" else: prompt = f"{prompt} {trigger_word}" if randomize_seed: seed = random.randint(0, MAX_SEED) with calculateDuration("Generating image"): final_image, used_seed = generate_image(prompt, resolution, seed, cfg_scale, steps) return final_image, used_seed def check_custom_model(link): split_link = link.split("/") if len(split_link) != 2: raise Exception("Invalid Hugging Face repository link format.") model_card = ModelCard.load(link) image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) trigger_word = model_card.data.get("instance_prompt", "") image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None safetensors_name = None # Simplified; assumes a safetensors file exists return split_link[1], link, safetensors_name, trigger_word, image_url def add_custom_lora(custom_lora): global loras if custom_lora: try: title, repo, path, trigger_word, image = check_custom_model(custom_lora) card = f'''
"+trigger_word+"
as the trigger word" if trigger_word else "No trigger word found."}