File size: 11,463 Bytes
e336179
b476d80
dddc2d6
 
b476d80
786abd0
dddc2d6
 
 
 
 
 
786abd0
3b057f7
dddc2d6
 
786abd0
dddc2d6
 
 
 
 
 
 
3b057f7
dddc2d6
 
 
 
 
 
 
 
 
a3c0180
dddc2d6
 
 
786abd0
dddc2d6
 
786abd0
dddc2d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e336179
dddc2d6
 
e336179
dddc2d6
 
 
 
 
 
 
 
b476d80
dddc2d6
 
 
 
 
 
 
 
 
 
b476d80
dddc2d6
 
 
 
 
c02a1b1
dddc2d6
 
 
 
 
 
 
55a7e0e
dddc2d6
 
 
a3c0180
dddc2d6
 
 
 
 
a3c0180
dddc2d6
 
 
 
55a7e0e
dddc2d6
 
 
 
 
 
 
 
 
a3c0180
dddc2d6
a3c0180
dddc2d6
 
 
a3c0180
dddc2d6
 
 
 
 
 
 
 
 
2d99b82
dddc2d6
e780483
dddc2d6
 
 
 
 
 
 
 
 
 
a3c0180
dddc2d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
786abd0
dddc2d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55a7e0e
dddc2d6
 
 
 
 
 
 
 
 
 
 
55a7e0e
dddc2d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e336179
dddc2d6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import random
import time
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
from hi_diffusers.schedulers.flash_flow_match import FlashFlowMatchEulerDiscreteScheduler
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
from huggingface_hub import ModelCard

# Constants
MODEL_PREFIX = "HiDream-ai"
LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"

FAST_MODEL_CONFIG = {
        "path": f"{MODEL_PREFIX}/HiDream-I1-Full",
        "guidance_scale": 5.0,
        "num_inference_steps": 50,
        "shift": 3.0,
        "scheduler": FlowUniPCMultistepScheduler
}

RESOLUTION_OPTIONS = [
    "1024 × 1024 (Square)",
    "768 × 1360 (Portrait)",
    "1360 × 768 (Landscape)",
    "880 × 1168 (Portrait)",
    "1168 × 880 (Landscape)",
    "1248 × 832 (Landscape)",
    "832 × 1248 (Portrait)"
]

# Load LoRAs from JSON file (assumed to be compatible with Hi-Dream)
with open('loras.json', 'r') as f:
    loras = json.load(f)

device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = 2**32 - 1

# Parse resolution string to height and width
def parse_resolution(res_str):
    mapping = {
        "1024 × 1024": (1024, 1024),
        "768 × 1360": (768, 1360),
        "1360 × 768": (1360, 768),
        "880 × 1168": (880, 1168),
        "1168 × 880": (1168, 880),
        "1248 × 832": (1248, 832),
        "832 × 1248": (832, 1248)
    }
    for key, (h, w) in mapping.items():
        if key in res_str:
            return h, w
    return 1024, 1024  # fallback

# Load the Hi-Dream Fast Model pipeline
pipe, MODEL_CONFIG = None, None

def load_fast_model():
    global pipe, MODEL_CONFIG
    config = FAST_MODEL_CONFIG
    scheduler = config["scheduler"](
        num_train_timesteps=1000,
        shift=config["shift"],
        use_dynamic_shifting=False
    )

    tokenizer = PreTrainedTokenizerFast.from_pretrained(
        LLAMA_MODEL_NAME,
        use_fast=False
    )
    text_encoder = LlamaForCausalLM.from_pretrained(
        LLAMA_MODEL_NAME,
        output_hidden_states=True,
        output_attentions=True,
        torch_dtype=torch.bfloat16
    ).to(device)

    transformer = HiDreamImageTransformer2DModel.from_pretrained(
        config["path"],
        subfolder="transformer",
        torch_dtype=torch.bfloat16
    ).to(device)

    pipe = HiDreamImagePipeline.from_pretrained(
        config["path"],
        scheduler=scheduler,
        tokenizer_4=tokenizer,
        text_encoder_4=text_encoder,
        torch_dtype=torch.bfloat16
    ).to(device, torch.bfloat16)

    pipe.transformer = transformer
    MODEL_CONFIG = config
    return pipe, config

# Generate image
def generate_image(prompt, resolution, seed, guidance_scale, num_inference_steps):
    global pipe, MODEL_CONFIG
    if pipe is None:
        pipe, MODEL_CONFIG = load_fast_model()

    height, width = parse_resolution(resolution)
    if seed == -1 or seed is None:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(int(seed))

    result = pipe(
        prompt=prompt,
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=1,
        generator=generator
    )

    return result.images[0], seed

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

def update_selection(evt: gr.SelectData, resolution):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    if "aspect" in selected_lora:
        if selected_lora["aspect"] == "portrait":
            resolution = "768 × 1360 (Portrait)"
        elif selected_lora["aspect"] == "landscape":
            resolution = "1360 × 768 (Landscape)"
        else:
            resolution = "1024 × 1024 (Square)"
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index,
        resolution,
    )

def run_lora(prompt, resolution, cfg_scale, steps, selected_index, randomize_seed, seed):
    global pipe
    if pipe is None:
        pipe, _ = load_fast_model()

    if selected_index is not None:
        selected_lora = loras[selected_index]
        lora_path = selected_lora["repo"]
        weight_name = selected_lora.get("weights", None)
        with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
            pipe.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True)
        trigger_word = selected_lora.get("trigger_word", "")
        if trigger_word:
            if "trigger_position" in selected_lora and selected_lora["trigger_position"] == "prepend":
                prompt = f"{trigger_word} {prompt}"
            else:
                prompt = f"{prompt} {trigger_word}"

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    with calculateDuration("Generating image"):
        final_image, used_seed = generate_image(prompt, resolution, seed, cfg_scale, steps)
    return final_image, used_seed

def check_custom_model(link):
    split_link = link.split("/")
    if len(split_link) != 2:
        raise Exception("Invalid Hugging Face repository link format.")
    model_card = ModelCard.load(link)
    image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
    trigger_word = model_card.data.get("instance_prompt", "")
    image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
    safetensors_name = None  # Simplified; assumes a safetensors file exists
    return split_link[1], link, safetensors_name, trigger_word, image_url

def add_custom_lora(custom_lora):
    global loras
    if custom_lora:
        try:
            title, repo, path, trigger_word, image = check_custom_model(custom_lora)
            card = f'''
            <div class="custom_lora_card">
              <span>Loaded custom LoRA:</span>
              <div class="card_internal">
                <img src="{image}" />
                <div>
                    <h3>{title}</h3>
                    <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found."}</small>
                </div>
              </div>
            </div>
            '''
            existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
            if not existing_item_index:
                new_item = {
                    "image": image,
                    "title": title,
                    "repo": repo,
                    "weights": path,
                    "trigger_word": trigger_word
                }
                existing_item_index = len(loras)
                loras.append(new_item)
            return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
        except Exception as e:
            gr.Warning(f"Invalid LoRA: {str(e)}")
            return gr.update(visible=True, value=f"Invalid LoRA: {str(e)}"), gr.update(visible=True), gr.update(), "", None, ""
    return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

def remove_custom_lora():
    return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
'''

font = [gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"]
with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(60, 60)) as app:
    title = gr.HTML(
        """<h1>Hi-Dream Full LoRA DLC 🤩</h1>""",
        elem_id="title",
    )
    selected_index = gr.State(None)
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
        with gr.Column(scale=1, elem_id="gen_column"):
            generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
    with gr.Row():
        with gr.Column():
            selected_info = gr.Markdown("")
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="LoRA Gallery",
                allow_preview=False,
                columns=3,
                elem_id="gallery",
                show_share_button=False
            )
            with gr.Group():
                custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
                gr.Markdown("[Check the list of Hi-Dream LoRAs]", elem_id="lora_list")
            custom_lora_info = gr.HTML(visible=False)
            custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
        with gr.Column():
            result = gr.Image(label="Generated Image")

    with gr.Row():
        with gr.Accordion("Advanced Settings", open=False):
            cfg_scale = gr.Slider(label="Guidance Scale", minimum=0, maximum=20, step=0.1, value=FAST_MODEL_CONFIG["guidance_scale"])
            steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=FAST_MODEL_CONFIG["num_inference_steps"])
            resolution = gr.Radio(
                choices=RESOLUTION_OPTIONS,
                value=RESOLUTION_OPTIONS[0],
                label="Resolution"
            )
            randomize_seed = gr.Checkbox(True, label="Randomize seed")
            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)

    gallery.select(
        update_selection,
        inputs=[resolution],
        outputs=[prompt, selected_info, selected_index, resolution]
    )
    custom_lora.input(
        add_custom_lora,
        inputs=[custom_lora],
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
    )
    custom_lora_button.click(
        remove_custom_lora,
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
    )
    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, resolution, cfg_scale, steps, selected_index, randomize_seed, seed],
        outputs=[result, seed]
    )

app.queue()
app.launch()