Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,463 Bytes
e336179 b476d80 dddc2d6 b476d80 786abd0 dddc2d6 786abd0 3b057f7 dddc2d6 786abd0 dddc2d6 3b057f7 dddc2d6 a3c0180 dddc2d6 786abd0 dddc2d6 786abd0 dddc2d6 e336179 dddc2d6 e336179 dddc2d6 b476d80 dddc2d6 b476d80 dddc2d6 c02a1b1 dddc2d6 55a7e0e dddc2d6 a3c0180 dddc2d6 a3c0180 dddc2d6 55a7e0e dddc2d6 a3c0180 dddc2d6 a3c0180 dddc2d6 a3c0180 dddc2d6 2d99b82 dddc2d6 e780483 dddc2d6 a3c0180 dddc2d6 786abd0 dddc2d6 55a7e0e dddc2d6 55a7e0e dddc2d6 e336179 dddc2d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import random
import time
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
from hi_diffusers.schedulers.flash_flow_match import FlashFlowMatchEulerDiscreteScheduler
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
from huggingface_hub import ModelCard
# Constants
MODEL_PREFIX = "HiDream-ai"
LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
FAST_MODEL_CONFIG = {
"path": f"{MODEL_PREFIX}/HiDream-I1-Full",
"guidance_scale": 5.0,
"num_inference_steps": 50,
"shift": 3.0,
"scheduler": FlowUniPCMultistepScheduler
}
RESOLUTION_OPTIONS = [
"1024 × 1024 (Square)",
"768 × 1360 (Portrait)",
"1360 × 768 (Landscape)",
"880 × 1168 (Portrait)",
"1168 × 880 (Landscape)",
"1248 × 832 (Landscape)",
"832 × 1248 (Portrait)"
]
# Load LoRAs from JSON file (assumed to be compatible with Hi-Dream)
with open('loras.json', 'r') as f:
loras = json.load(f)
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = 2**32 - 1
# Parse resolution string to height and width
def parse_resolution(res_str):
mapping = {
"1024 × 1024": (1024, 1024),
"768 × 1360": (768, 1360),
"1360 × 768": (1360, 768),
"880 × 1168": (880, 1168),
"1168 × 880": (1168, 880),
"1248 × 832": (1248, 832),
"832 × 1248": (832, 1248)
}
for key, (h, w) in mapping.items():
if key in res_str:
return h, w
return 1024, 1024 # fallback
# Load the Hi-Dream Fast Model pipeline
pipe, MODEL_CONFIG = None, None
def load_fast_model():
global pipe, MODEL_CONFIG
config = FAST_MODEL_CONFIG
scheduler = config["scheduler"](
num_train_timesteps=1000,
shift=config["shift"],
use_dynamic_shifting=False
)
tokenizer = PreTrainedTokenizerFast.from_pretrained(
LLAMA_MODEL_NAME,
use_fast=False
)
text_encoder = LlamaForCausalLM.from_pretrained(
LLAMA_MODEL_NAME,
output_hidden_states=True,
output_attentions=True,
torch_dtype=torch.bfloat16
).to(device)
transformer = HiDreamImageTransformer2DModel.from_pretrained(
config["path"],
subfolder="transformer",
torch_dtype=torch.bfloat16
).to(device)
pipe = HiDreamImagePipeline.from_pretrained(
config["path"],
scheduler=scheduler,
tokenizer_4=tokenizer,
text_encoder_4=text_encoder,
torch_dtype=torch.bfloat16
).to(device, torch.bfloat16)
pipe.transformer = transformer
MODEL_CONFIG = config
return pipe, config
# Generate image
def generate_image(prompt, resolution, seed, guidance_scale, num_inference_steps):
global pipe, MODEL_CONFIG
if pipe is None:
pipe, MODEL_CONFIG = load_fast_model()
height, width = parse_resolution(resolution)
if seed == -1 or seed is None:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(int(seed))
result = pipe(
prompt=prompt,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
generator=generator
)
return result.images[0], seed
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, resolution):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
resolution = "768 × 1360 (Portrait)"
elif selected_lora["aspect"] == "landscape":
resolution = "1360 × 768 (Landscape)"
else:
resolution = "1024 × 1024 (Square)"
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
resolution,
)
def run_lora(prompt, resolution, cfg_scale, steps, selected_index, randomize_seed, seed):
global pipe
if pipe is None:
pipe, _ = load_fast_model()
if selected_index is not None:
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
weight_name = selected_lora.get("weights", None)
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
pipe.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True)
trigger_word = selected_lora.get("trigger_word", "")
if trigger_word:
if "trigger_position" in selected_lora and selected_lora["trigger_position"] == "prepend":
prompt = f"{trigger_word} {prompt}"
else:
prompt = f"{prompt} {trigger_word}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
with calculateDuration("Generating image"):
final_image, used_seed = generate_image(prompt, resolution, seed, cfg_scale, steps)
return final_image, used_seed
def check_custom_model(link):
split_link = link.split("/")
if len(split_link) != 2:
raise Exception("Invalid Hugging Face repository link format.")
model_card = ModelCard.load(link)
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
safetensors_name = None # Simplified; assumes a safetensors file exists
return split_link[1], link, safetensors_name, trigger_word, image_url
def add_custom_lora(custom_lora):
global loras
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
card = f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found."}</small>
</div>
</div>
</div>
'''
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if not existing_item_index:
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
existing_item_index = len(loras)
loras.append(new_item)
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
gr.Warning(f"Invalid LoRA: {str(e)}")
return gr.update(visible=True, value=f"Invalid LoRA: {str(e)}"), gr.update(visible=True), gr.update(), "", None, ""
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora():
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
'''
font = [gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"]
with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(60, 60)) as app:
title = gr.HTML(
"""<h1>Hi-Dream Full LoRA DLC 🤩</h1>""",
elem_id="title",
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
with gr.Group():
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
gr.Markdown("[Check the list of Hi-Dream LoRAs]", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column():
result = gr.Image(label="Generated Image")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
cfg_scale = gr.Slider(label="Guidance Scale", minimum=0, maximum=20, step=0.1, value=FAST_MODEL_CONFIG["guidance_scale"])
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=FAST_MODEL_CONFIG["num_inference_steps"])
resolution = gr.Radio(
choices=RESOLUTION_OPTIONS,
value=RESOLUTION_OPTIONS[0],
label="Resolution"
)
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
gallery.select(
update_selection,
inputs=[resolution],
outputs=[prompt, selected_info, selected_index, resolution]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, resolution, cfg_scale, steps, selected_index, randomize_seed, seed],
outputs=[result, seed]
)
app.queue()
app.launch() |