Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,497 Bytes
630d1c8 60d3cb4 cce056a 630d1c8 357c194 630d1c8 357c194 630d1c8 357c194 e3e7392 630d1c8 8fe98c0 85f4074 630d1c8 357c194 f263a5c e3e7392 630d1c8 e3e7392 630d1c8 357c194 e3e7392 357c194 630d1c8 357c194 630d1c8 357c194 630d1c8 e3e7392 630d1c8 e3e7392 630d1c8 e3e7392 630d1c8 e3e7392 630d1c8 e3e7392 630d1c8 e3e7392 630d1c8 e3e7392 630d1c8 ce6ba71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
import torch
from transformers import AutoModelForObjectDetection, AutoImageProcessor
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Your diffusion model
# Load your main diffusion pipeline
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe.scheduler = DPMSolverSDEScheduler.from_config(pipe.scheduler.config, algorithm_type="dpmsolver++", solver_order=2, use_karras_sigmas=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Load ADetailer model (from Hugging Face)
adetailer_model_id = "Bingsu/adetailer"
adetailer_model = AutoModelForObjectDetection.from_pretrained(adetailer_model_id)
adetailer_processor = AutoImageProcessor.from_pretrained(adetailer_model_id)
def fix_eyes_with_adetailer(image):
# Convert image to format for ADetailer
pixel_values = adetailer_processor(images=image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
# Run ADetailer on the image
with torch.no_grad():
outputs = adetailer_model(pixel_values=pixel_values)
# Post-process the outputs and apply the fixes (if any)
corrected_image = image # Placeholder for the actual post-processing
# Apply fixes based on the detection and correction model outputs
# This step requires actual ADetailer implementation details for correcting eyes.
return corrected_image # Return the corrected image
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
# Apply ADetailer to fix eyes after generating the image
corrected_image = fix_eyes_with_adetailer(image)
return corrected_image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""#col-container {margin: 0 auto; max-width: 640px;}"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, #Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, #Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0, #Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=2, #Replace with defaults that work for your model
)
gr.Examples(
examples=examples,
inputs=[prompt]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.queue().launch()
|