File size: 5,497 Bytes
630d1c8
 
 
60d3cb4
cce056a
630d1c8
357c194
630d1c8
 
357c194
630d1c8
357c194
e3e7392
 
 
 
630d1c8
8fe98c0
85f4074
630d1c8
 
 
 
 
357c194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f263a5c
e3e7392
630d1c8
 
e3e7392
630d1c8
 
 
357c194
 
 
 
 
 
 
e3e7392
357c194
 
 
630d1c8
357c194
630d1c8
 
 
 
 
 
 
357c194
630d1c8
 
 
 
e3e7392
 
 
630d1c8
 
e3e7392
630d1c8
 
 
 
 
 
 
 
 
 
 
 
 
e3e7392
630d1c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e7392
630d1c8
 
 
 
 
e3e7392
630d1c8
 
 
 
 
 
 
e3e7392
630d1c8
 
 
e3e7392
630d1c8
 
 
 
 
ce6ba71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
import torch
from transformers import AutoModelForObjectDetection, AutoImageProcessor

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl"  # Your diffusion model

# Load your main diffusion pipeline
if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe.scheduler = DPMSolverSDEScheduler.from_config(pipe.scheduler.config, algorithm_type="dpmsolver++", solver_order=2, use_karras_sigmas=True)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# Load ADetailer model (from Hugging Face)
adetailer_model_id = "Bingsu/adetailer"
adetailer_model = AutoModelForObjectDetection.from_pretrained(adetailer_model_id)
adetailer_processor = AutoImageProcessor.from_pretrained(adetailer_model_id)

def fix_eyes_with_adetailer(image):
    # Convert image to format for ADetailer
    pixel_values = adetailer_processor(images=image, return_tensors="pt").pixel_values
    pixel_values = pixel_values.to(device)
    
    # Run ADetailer on the image
    with torch.no_grad():
        outputs = adetailer_model(pixel_values=pixel_values)
    
    # Post-process the outputs and apply the fixes (if any)
    corrected_image = image  # Placeholder for the actual post-processing
    # Apply fixes based on the detection and correction model outputs
    # This step requires actual ADetailer implementation details for correcting eyes.

    return corrected_image  # Return the corrected image

@spaces.GPU  #[uncomment to use ZeroGPU]
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
        prompt=prompt, 
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale, 
        num_inference_steps=num_inference_steps, 
        width=width, 
        height=height,
        generator=generator
    ).images[0] 

    # Apply ADetailer to fix eyes after generating the image
    corrected_image = fix_eyes_with_adetailer(image)
    
    return corrected_image, seed

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css="""#col-container {margin: 0 auto; max-width: 640px;}"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image Gradio Template
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024, #Replace with defaults that work for your model
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024, #Replace with defaults that work for your model
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0, #Replace with defaults that work for your model
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=2, #Replace with defaults that work for your model
                )
        
        gr.Examples(
            examples=examples,
            inputs=[prompt]
        )
    
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

demo.queue().launch()