panelforge commited on
Commit
f263a5c
·
verified ·
1 Parent(s): 99ba156

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -36
app.py CHANGED
@@ -1,44 +1,76 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
 
4
  import spaces #[uncomment to use ZeroGPU]
5
- #added DPMSolverSDEScheduler
6
  from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
7
  import torch
8
 
 
 
 
 
 
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" #Replace to the model you would like to use
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
 
17
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- #added full line below pipe.scheduler...
19
  pipe.scheduler = DPMSolverSDEScheduler.from_config(pipe.scheduler.config, algorithm_type="dpmsolver++", solver_order=2, use_karras_sigmas=True)
20
  pipe = pipe.to(device)
21
 
22
  MAX_SEED = np.iinfo(np.int32).max
23
  MAX_IMAGE_SIZE = 1024
24
 
25
- @spaces.GPU #[uncomment to use ZeroGPU]
26
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
 
 
 
 
 
 
 
28
  if randomize_seed:
29
  seed = random.randint(0, MAX_SEED)
30
-
31
  generator = torch.Generator().manual_seed(seed)
32
 
 
33
  image = pipe(
34
- prompt = prompt,
35
- negative_prompt = negative_prompt,
36
- guidance_scale = guidance_scale,
37
- num_inference_steps = num_inference_steps,
38
- width = width,
39
- height = height,
40
- generator = generator
41
- ).images[0]
42
 
43
  return image, seed
44
 
@@ -48,7 +80,7 @@ examples = [
48
  "A delicious ceviche cheesecake slice",
49
  ]
50
 
51
- css="""
52
  #col-container {
53
  margin: 0 auto;
54
  max-width: 640px;
@@ -58,12 +90,9 @@ css="""
58
  with gr.Blocks(css=css) as demo:
59
 
60
  with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- """)
64
 
65
  with gr.Row():
66
-
67
  prompt = gr.Text(
68
  label="Prompt",
69
  show_label=False,
@@ -77,7 +106,6 @@ with gr.Blocks(css=css) as demo:
77
  result = gr.Image(label="Result", show_label=False)
78
 
79
  with gr.Accordion("Advanced Settings", open=False):
80
-
81
  negative_prompt = gr.Text(
82
  label="Negative prompt",
83
  max_lines=1,
@@ -96,13 +124,12 @@ with gr.Blocks(css=css) as demo:
96
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
97
 
98
  with gr.Row():
99
-
100
  width = gr.Slider(
101
  label="Width",
102
  minimum=256,
103
  maximum=MAX_IMAGE_SIZE,
104
  step=32,
105
- value=1024, #Replace with defaults that work for your model
106
  )
107
 
108
  height = gr.Slider(
@@ -110,17 +137,16 @@ with gr.Blocks(css=css) as demo:
110
  minimum=256,
111
  maximum=MAX_IMAGE_SIZE,
112
  step=32,
113
- value=1024, #Replace with defaults that work for your model
114
  )
115
 
116
  with gr.Row():
117
-
118
  guidance_scale = gr.Slider(
119
  label="Guidance scale",
120
  minimum=0.0,
121
  maximum=10.0,
122
  step=0.1,
123
- value=0.0, #Replace with defaults that work for your model
124
  )
125
 
126
  num_inference_steps = gr.Slider(
@@ -128,18 +154,20 @@ with gr.Blocks(css=css) as demo:
128
  minimum=1,
129
  maximum=50,
130
  step=1,
131
- value=2, #Replace with defaults that work for your model
132
  )
133
 
134
  gr.Examples(
135
- examples = examples,
136
- inputs = [prompt]
137
  )
 
 
138
  gr.on(
139
  triggers=[run_button.click, prompt.submit],
140
- fn = infer,
141
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
142
- outputs = [result, seed]
143
  )
144
 
145
- demo.queue().launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ import os
5
+ import requests # For calling Hugging Face's Inference API
6
  import spaces #[uncomment to use ZeroGPU]
 
7
  from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
8
  import torch
9
 
10
+ # Get Hugging Face API key from environment variable
11
+ huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY")
12
+
13
+ if huggingface_api_key is None:
14
+ raise ValueError("Hugging Face API key is not set. Please set the 'HUGGINGFACE_API_KEY' environment variable.")
15
+
16
  device = "cuda" if torch.cuda.is_available() else "cpu"
17
+ model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Replace with your model ID
18
 
19
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
 
 
 
20
 
21
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
 
22
  pipe.scheduler = DPMSolverSDEScheduler.from_config(pipe.scheduler.config, algorithm_type="dpmsolver++", solver_order=2, use_karras_sigmas=True)
23
  pipe = pipe.to(device)
24
 
25
  MAX_SEED = np.iinfo(np.int32).max
26
  MAX_IMAGE_SIZE = 1024
27
 
28
+ # Function to enhance the prompt using Hugging Face's Inference API
29
+ def enhance_prompt(prompt):
30
+ hf_model_id = "EleutherAI/gpt-neo-1.3B" # You can choose a different model
31
+ api_url = f"https://api-inference.huggingface.co/models/{hf_model_id}"
32
+
33
+ headers = {
34
+ "Authorization": f"Bearer {huggingface_api_key}"
35
+ }
36
+
37
+ payload = {
38
+ "inputs": f"Enhance this prompt: {prompt}",
39
+ "parameters": {"max_new_tokens": 50, "temperature": 0.7}
40
+ }
41
+
42
+ response = requests.post(api_url, headers=headers, json=payload)
43
+
44
+ if response.status_code != 200:
45
+ raise Exception(f"Failed to enhance prompt: {response.text}")
46
+
47
+ result = response.json()
48
+ enhanced_prompt = result[0]['generated_text']
49
+
50
+ return enhanced_prompt
51
 
52
+ # Inference function with automatic prompt enhancement
53
+ @spaces.GPU # [uncomment to use ZeroGPU]
54
+ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
55
+
56
+ # Automatically enhance the prompt using Hugging Face's API
57
+ enhanced_prompt = enhance_prompt(prompt)
58
+
59
  if randomize_seed:
60
  seed = random.randint(0, MAX_SEED)
61
+
62
  generator = torch.Generator().manual_seed(seed)
63
 
64
+ # Generate the image using the enhanced prompt
65
  image = pipe(
66
+ prompt=enhanced_prompt,
67
+ negative_prompt=negative_prompt,
68
+ guidance_scale=guidance_scale,
69
+ num_inference_steps=num_inference_steps,
70
+ width=width,
71
+ height=height,
72
+ generator=generator
73
+ ).images[0]
74
 
75
  return image, seed
76
 
 
80
  "A delicious ceviche cheesecake slice",
81
  ]
82
 
83
+ css = """
84
  #col-container {
85
  margin: 0 auto;
86
  max-width: 640px;
 
90
  with gr.Blocks(css=css) as demo:
91
 
92
  with gr.Column(elem_id="col-container"):
93
+ gr.Markdown("# Text-to-Image Gradio Template")
 
 
94
 
95
  with gr.Row():
 
96
  prompt = gr.Text(
97
  label="Prompt",
98
  show_label=False,
 
106
  result = gr.Image(label="Result", show_label=False)
107
 
108
  with gr.Accordion("Advanced Settings", open=False):
 
109
  negative_prompt = gr.Text(
110
  label="Negative prompt",
111
  max_lines=1,
 
124
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
125
 
126
  with gr.Row():
 
127
  width = gr.Slider(
128
  label="Width",
129
  minimum=256,
130
  maximum=MAX_IMAGE_SIZE,
131
  step=32,
132
+ value=1024, # Default width for the model
133
  )
134
 
135
  height = gr.Slider(
 
137
  minimum=256,
138
  maximum=MAX_IMAGE_SIZE,
139
  step=32,
140
+ value=1024, # Default height for the model
141
  )
142
 
143
  with gr.Row():
 
144
  guidance_scale = gr.Slider(
145
  label="Guidance scale",
146
  minimum=0.0,
147
  maximum=10.0,
148
  step=0.1,
149
+ value=0.0, # Default guidance scale for the model
150
  )
151
 
152
  num_inference_steps = gr.Slider(
 
154
  minimum=1,
155
  maximum=50,
156
  step=1,
157
+ value=2, # Default inference steps for the model
158
  )
159
 
160
  gr.Examples(
161
+ examples=examples,
162
+ inputs=[prompt]
163
  )
164
+
165
+ # Handle button clicks and prompt submission
166
  gr.on(
167
  triggers=[run_button.click, prompt.submit],
168
+ fn=infer,
169
+ inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
170
+ outputs=[result, seed]
171
  )
172
 
173
+ demo.queue().launch()