panelforge commited on
Commit
e3e7392
·
verified ·
1 Parent(s): f263a5c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -64
app.py CHANGED
@@ -1,22 +1,17 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- import os
5
- import requests # For calling Hugging Face's Inference API
6
  import spaces #[uncomment to use ZeroGPU]
7
  from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
8
  import torch
9
 
10
- # Get Hugging Face API key from environment variable
11
- huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY")
12
-
13
- if huggingface_api_key is None:
14
- raise ValueError("Hugging Face API key is not set. Please set the 'HUGGINGFACE_API_KEY' environment variable.")
15
-
16
  device = "cuda" if torch.cuda.is_available() else "cpu"
17
- model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Replace with your model ID
18
 
19
- torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
 
 
 
20
 
21
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
22
  pipe.scheduler = DPMSolverSDEScheduler.from_config(pipe.scheduler.config, algorithm_type="dpmsolver++", solver_order=2, use_karras_sigmas=True)
@@ -25,52 +20,23 @@ pipe = pipe.to(device)
25
  MAX_SEED = np.iinfo(np.int32).max
26
  MAX_IMAGE_SIZE = 1024
27
 
28
- # Function to enhance the prompt using Hugging Face's Inference API
29
- def enhance_prompt(prompt):
30
- hf_model_id = "EleutherAI/gpt-neo-1.3B" # You can choose a different model
31
- api_url = f"https://api-inference.huggingface.co/models/{hf_model_id}"
32
-
33
- headers = {
34
- "Authorization": f"Bearer {huggingface_api_key}"
35
- }
36
-
37
- payload = {
38
- "inputs": f"Enhance this prompt: {prompt}",
39
- "parameters": {"max_new_tokens": 50, "temperature": 0.7}
40
- }
41
-
42
- response = requests.post(api_url, headers=headers, json=payload)
43
-
44
- if response.status_code != 200:
45
- raise Exception(f"Failed to enhance prompt: {response.text}")
46
-
47
- result = response.json()
48
- enhanced_prompt = result[0]['generated_text']
49
-
50
- return enhanced_prompt
51
-
52
- # Inference function with automatic prompt enhancement
53
- @spaces.GPU # [uncomment to use ZeroGPU]
54
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
55
-
56
- # Automatically enhance the prompt using Hugging Face's API
57
- enhanced_prompt = enhance_prompt(prompt)
58
-
59
  if randomize_seed:
60
  seed = random.randint(0, MAX_SEED)
61
-
62
  generator = torch.Generator().manual_seed(seed)
63
 
64
- # Generate the image using the enhanced prompt
65
  image = pipe(
66
- prompt=enhanced_prompt,
67
- negative_prompt=negative_prompt,
68
- guidance_scale=guidance_scale,
69
- num_inference_steps=num_inference_steps,
70
- width=width,
71
- height=height,
72
- generator=generator
73
- ).images[0]
74
 
75
  return image, seed
76
 
@@ -80,7 +46,7 @@ examples = [
80
  "A delicious ceviche cheesecake slice",
81
  ]
82
 
83
- css = """
84
  #col-container {
85
  margin: 0 auto;
86
  max-width: 640px;
@@ -90,9 +56,12 @@ css = """
90
  with gr.Blocks(css=css) as demo:
91
 
92
  with gr.Column(elem_id="col-container"):
93
- gr.Markdown("# Text-to-Image Gradio Template")
 
 
94
 
95
  with gr.Row():
 
96
  prompt = gr.Text(
97
  label="Prompt",
98
  show_label=False,
@@ -106,6 +75,7 @@ with gr.Blocks(css=css) as demo:
106
  result = gr.Image(label="Result", show_label=False)
107
 
108
  with gr.Accordion("Advanced Settings", open=False):
 
109
  negative_prompt = gr.Text(
110
  label="Negative prompt",
111
  max_lines=1,
@@ -124,12 +94,13 @@ with gr.Blocks(css=css) as demo:
124
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
125
 
126
  with gr.Row():
 
127
  width = gr.Slider(
128
  label="Width",
129
  minimum=256,
130
  maximum=MAX_IMAGE_SIZE,
131
  step=32,
132
- value=1024, # Default width for the model
133
  )
134
 
135
  height = gr.Slider(
@@ -137,16 +108,17 @@ with gr.Blocks(css=css) as demo:
137
  minimum=256,
138
  maximum=MAX_IMAGE_SIZE,
139
  step=32,
140
- value=1024, # Default height for the model
141
  )
142
 
143
  with gr.Row():
 
144
  guidance_scale = gr.Slider(
145
  label="Guidance scale",
146
  minimum=0.0,
147
  maximum=10.0,
148
  step=0.1,
149
- value=0.0, # Default guidance scale for the model
150
  )
151
 
152
  num_inference_steps = gr.Slider(
@@ -154,20 +126,18 @@ with gr.Blocks(css=css) as demo:
154
  minimum=1,
155
  maximum=50,
156
  step=1,
157
- value=2, # Default inference steps for the model
158
  )
159
 
160
  gr.Examples(
161
- examples=examples,
162
- inputs=[prompt]
163
  )
164
-
165
- # Handle button clicks and prompt submission
166
  gr.on(
167
  triggers=[run_button.click, prompt.submit],
168
- fn=infer,
169
- inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
170
- outputs=[result, seed]
171
  )
172
 
173
- demo.queue().launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
 
4
  import spaces #[uncomment to use ZeroGPU]
5
  from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
6
  import torch
7
 
 
 
 
 
 
 
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
+ model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" #Replace to the model you would like to use
10
 
11
+ if torch.cuda.is_available():
12
+ torch_dtype = torch.float16
13
+ else:
14
+ torch_dtype = torch.float32
15
 
16
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
17
  pipe.scheduler = DPMSolverSDEScheduler.from_config(pipe.scheduler.config, algorithm_type="dpmsolver++", solver_order=2, use_karras_sigmas=True)
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
23
+ @spaces.GPU #[uncomment to use ZeroGPU]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
25
+
 
 
 
26
  if randomize_seed:
27
  seed = random.randint(0, MAX_SEED)
28
+
29
  generator = torch.Generator().manual_seed(seed)
30
 
 
31
  image = pipe(
32
+ prompt = prompt,
33
+ negative_prompt = negative_prompt,
34
+ guidance_scale = guidance_scale,
35
+ num_inference_steps = num_inference_steps,
36
+ width = width,
37
+ height = height,
38
+ generator = generator
39
+ ).images[0]
40
 
41
  return image, seed
42
 
 
46
  "A delicious ceviche cheesecake slice",
47
  ]
48
 
49
+ css="""
50
  #col-container {
51
  margin: 0 auto;
52
  max-width: 640px;
 
56
  with gr.Blocks(css=css) as demo:
57
 
58
  with gr.Column(elem_id="col-container"):
59
+ gr.Markdown(f"""
60
+ # Text-to-Image Gradio Template
61
+ """)
62
 
63
  with gr.Row():
64
+
65
  prompt = gr.Text(
66
  label="Prompt",
67
  show_label=False,
 
75
  result = gr.Image(label="Result", show_label=False)
76
 
77
  with gr.Accordion("Advanced Settings", open=False):
78
+
79
  negative_prompt = gr.Text(
80
  label="Negative prompt",
81
  max_lines=1,
 
94
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
95
 
96
  with gr.Row():
97
+
98
  width = gr.Slider(
99
  label="Width",
100
  minimum=256,
101
  maximum=MAX_IMAGE_SIZE,
102
  step=32,
103
+ value=1024, #Replace with defaults that work for your model
104
  )
105
 
106
  height = gr.Slider(
 
108
  minimum=256,
109
  maximum=MAX_IMAGE_SIZE,
110
  step=32,
111
+ value=1024, #Replace with defaults that work for your model
112
  )
113
 
114
  with gr.Row():
115
+
116
  guidance_scale = gr.Slider(
117
  label="Guidance scale",
118
  minimum=0.0,
119
  maximum=10.0,
120
  step=0.1,
121
+ value=0.0, #Replace with defaults that work for your model
122
  )
123
 
124
  num_inference_steps = gr.Slider(
 
126
  minimum=1,
127
  maximum=50,
128
  step=1,
129
+ value=2, #Replace with defaults that work for your model
130
  )
131
 
132
  gr.Examples(
133
+ examples = examples,
134
+ inputs = [prompt]
135
  )
 
 
136
  gr.on(
137
  triggers=[run_button.click, prompt.submit],
138
+ fn = infer,
139
+ inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
140
+ outputs = [result, seed]
141
  )
142
 
143
+ demo.queue().launch()