panelforge commited on
Commit
357c194
·
verified ·
1 Parent(s): e3e7392

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -39
app.py CHANGED
@@ -4,10 +4,12 @@ import random
4
  import spaces #[uncomment to use ZeroGPU]
5
  from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
6
  import torch
 
7
 
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
- model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" #Replace to the model you would like to use
10
 
 
11
  if torch.cuda.is_available():
12
  torch_dtype = torch.float16
13
  else:
@@ -20,7 +22,28 @@ pipe = pipe.to(device)
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
23
- @spaces.GPU #[uncomment to use ZeroGPU]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
25
 
26
  if randomize_seed:
@@ -29,16 +52,19 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
29
  generator = torch.Generator().manual_seed(seed)
30
 
31
  image = pipe(
32
- prompt = prompt,
33
- negative_prompt = negative_prompt,
34
- guidance_scale = guidance_scale,
35
- num_inference_steps = num_inference_steps,
36
- width = width,
37
- height = height,
38
- generator = generator
39
  ).images[0]
 
 
 
40
 
41
- return image, seed
42
 
43
  examples = [
44
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
@@ -46,12 +72,7 @@ examples = [
46
  "A delicious ceviche cheesecake slice",
47
  ]
48
 
49
- css="""
50
- #col-container {
51
- margin: 0 auto;
52
- max-width: 640px;
53
- }
54
- """
55
 
56
  with gr.Blocks(css=css) as demo:
57
 
@@ -118,26 +139,3 @@ with gr.Blocks(css=css) as demo:
118
  minimum=0.0,
119
  maximum=10.0,
120
  step=0.1,
121
- value=0.0, #Replace with defaults that work for your model
122
- )
123
-
124
- num_inference_steps = gr.Slider(
125
- label="Number of inference steps",
126
- minimum=1,
127
- maximum=50,
128
- step=1,
129
- value=2, #Replace with defaults that work for your model
130
- )
131
-
132
- gr.Examples(
133
- examples = examples,
134
- inputs = [prompt]
135
- )
136
- gr.on(
137
- triggers=[run_button.click, prompt.submit],
138
- fn = infer,
139
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
140
- outputs = [result, seed]
141
- )
142
-
143
- demo.queue().launch()
 
4
  import spaces #[uncomment to use ZeroGPU]
5
  from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
6
  import torch
7
+ from transformers import AutoModelForObjectDetection, AutoImageProcessor
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
+ model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Your diffusion model
11
 
12
+ # Load your main diffusion pipeline
13
  if torch.cuda.is_available():
14
  torch_dtype = torch.float16
15
  else:
 
22
  MAX_SEED = np.iinfo(np.int32).max
23
  MAX_IMAGE_SIZE = 1024
24
 
25
+ # Load ADetailer model (from Hugging Face)
26
+ adetailer_model_id = "Bingsu/adetailer"
27
+ adetailer_model = AutoModelForObjectDetection.from_pretrained(adetailer_model_id)
28
+ adetailer_processor = AutoImageProcessor.from_pretrained(adetailer_model_id)
29
+
30
+ def fix_eyes_with_adetailer(image):
31
+ # Convert image to format for ADetailer
32
+ pixel_values = adetailer_processor(images=image, return_tensors="pt").pixel_values
33
+ pixel_values = pixel_values.to(device)
34
+
35
+ # Run ADetailer on the image
36
+ with torch.no_grad():
37
+ outputs = adetailer_model(pixel_values=pixel_values)
38
+
39
+ # Post-process the outputs and apply the fixes (if any)
40
+ corrected_image = image # Placeholder for the actual post-processing
41
+ # Apply fixes based on the detection and correction model outputs
42
+ # This step requires actual ADetailer implementation details for correcting eyes.
43
+
44
+ return corrected_image # Return the corrected image
45
+
46
+ @spaces.GPU #[uncomment to use ZeroGPU]
47
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
48
 
49
  if randomize_seed:
 
52
  generator = torch.Generator().manual_seed(seed)
53
 
54
  image = pipe(
55
+ prompt=prompt,
56
+ negative_prompt=negative_prompt,
57
+ guidance_scale=guidance_scale,
58
+ num_inference_steps=num_inference_steps,
59
+ width=width,
60
+ height=height,
61
+ generator=generator
62
  ).images[0]
63
+
64
+ # Apply ADetailer to fix eyes after generating the image
65
+ corrected_image = fix_eyes_with_adetailer(image)
66
 
67
+ return corrected_image, seed
68
 
69
  examples = [
70
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
 
72
  "A delicious ceviche cheesecake slice",
73
  ]
74
 
75
+ css="""#col-container {margin: 0 auto; max-width: 640px;}"""
 
 
 
 
 
76
 
77
  with gr.Blocks(css=css) as demo:
78
 
 
139
  minimum=0.0,
140
  maximum=10.0,
141
  step=0.1,