Spaces:
Sleeping
Sleeping
File size: 4,537 Bytes
fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 e7efd92 3105137 fbb5eea 3105137 fbb5eea 3105137 9e22fd6 3105137 9e22fd6 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea e7efd92 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 fbb5eea 3105137 6227457 fbb5eea 3105137 fbb5eea 3105137 9e22fd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline
from torch import autocast # Usando autocast para otimizar operações em float16
# Verifica se a GPU está disponível
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo" # Modelo otimizado para velocidade
# Usando float16 para otimizar a execução na GPU
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Carregando o modelo com otimizações
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)
# Max seed
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 512 # Dimensões menores para acelerar
# Função de inferência otimizada
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
# Randomiza a semente, se necessário
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device).manual_seed(seed)
# Usando autocast para acelerar o cálculo com float16 em GPUs
with autocast("cuda"):
# Geração da imagem com um número reduzido de passos (para acelerar)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
# Exemplos para o Gradio
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 2k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Dimensões reduzidas para otimizar
)
height = gr.Slider(
label="Height",
minimum=576,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Dimensões reduzidas para otimizar
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5, # Valor adequado para controle
)
num_inference_steps = gr.Slider(
label="Inference steps",
minimum=1,
maximum=30, # Menos passos para otimizar a velocidade
step=1,
value=20, # Um valor equilibrado
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|