File size: 4,537 Bytes
fbb5eea
 
 
 
3105137
 
fbb5eea
3105137
fbb5eea
3105137
fbb5eea
3105137
 
fbb5eea
3105137
 
e7efd92
3105137
 
 
fbb5eea
3105137
 
 
 
 
 
 
 
 
 
 
 
 
fbb5eea
 
3105137
 
 
 
 
 
 
9e22fd6
3105137
9e22fd6
 
 
 
 
3105137
 
 
 
 
 
fbb5eea
3105137
 
 
fbb5eea
 
3105137
fbb5eea
 
3105137
fbb5eea
 
 
 
 
3105137
 
fbb5eea
 
 
 
 
 
 
 
3105137
 
 
fbb5eea
3105137
fbb5eea
3105137
 
 
 
 
 
 
fbb5eea
 
 
 
 
 
 
3105137
fbb5eea
3105137
fbb5eea
 
 
 
 
 
3105137
fbb5eea
3105137
fbb5eea
 
3105137
fbb5eea
 
3105137
fbb5eea
e7efd92
3105137
fbb5eea
3105137
 
 
fbb5eea
3105137
fbb5eea
3105137
fbb5eea
3105137
fbb5eea
3105137
fbb5eea
3105137
fbb5eea
3105137
 
6227457
fbb5eea
 
3105137
 
 
 
 
 
 
 
 
 
 
 
fbb5eea
 
3105137
 
 
9e22fd6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline
from torch import autocast  # Usando autocast para otimizar operações em float16

# Verifica se a GPU está disponível
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"  # Modelo otimizado para velocidade

# Usando float16 para otimizar a execução na GPU
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# Carregando o modelo com otimizações
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)

# Max seed
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 512  # Dimensões menores para acelerar

# Função de inferência otimizada
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    # Randomiza a semente, se necessário
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device).manual_seed(seed)

    # Usando autocast para acelerar o cálculo com float16 em GPUs
    with autocast("cuda"):
        # Geração da imagem com um número reduzido de passos (para acelerar)
        image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]

    return image, seed


# Exemplos para o Gradio
examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 2k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Dimensões reduzidas para otimizar
                )

                height = gr.Slider(
                    label="Height",
                    minimum=576,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Dimensões reduzidas para otimizar
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,  # Valor adequado para controle
                )

                num_inference_steps = gr.Slider(
                    label="Inference steps",
                    minimum=1,
                    maximum=30,  # Menos passos para otimizar a velocidade
                    step=1,
                    value=20,  # Um valor equilibrado
                )

        gr.Examples(examples=examples, inputs=[prompt])

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()