Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,66 +1,77 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
import spaces
|
5 |
import torch
|
6 |
-
from diffusers import
|
7 |
-
from
|
8 |
-
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
|
10 |
-
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
16 |
-
torch.cuda.empty_cache()
|
17 |
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
def infer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
prompt=prompt,
|
|
|
31 |
guidance_scale=guidance_scale,
|
32 |
num_inference_steps=num_inference_steps,
|
33 |
width=width,
|
34 |
height=height,
|
35 |
generator=generator,
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
41 |
examples = [
|
42 |
-
"a
|
43 |
-
"
|
44 |
-
"
|
45 |
]
|
46 |
|
47 |
-
css="""
|
48 |
#col-container {
|
49 |
margin: 0 auto;
|
50 |
-
max-width:
|
51 |
}
|
52 |
"""
|
53 |
|
54 |
with gr.Blocks(css=css) as demo:
|
55 |
-
|
56 |
with gr.Column(elem_id="col-container"):
|
57 |
-
gr.Markdown(
|
58 |
-
|
59 |
-
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
60 |
-
""")
|
61 |
-
|
62 |
with gr.Row():
|
63 |
-
|
64 |
prompt = gr.Text(
|
65 |
label="Prompt",
|
66 |
show_label=False,
|
@@ -68,13 +79,19 @@ with gr.Blocks(css=css) as demo:
|
|
68 |
placeholder="Enter your prompt",
|
69 |
container=False,
|
70 |
)
|
71 |
-
|
72 |
-
run_button = gr.Button("Run", scale=0)
|
73 |
-
|
74 |
result = gr.Image(label="Result", show_label=False)
|
75 |
-
|
76 |
with gr.Accordion("Advanced Settings", open=False):
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
seed = gr.Slider(
|
79 |
label="Seed",
|
80 |
minimum=0,
|
@@ -82,59 +99,62 @@ with gr.Blocks(css=css) as demo:
|
|
82 |
step=1,
|
83 |
value=0,
|
84 |
)
|
85 |
-
|
86 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
87 |
-
|
88 |
with gr.Row():
|
89 |
-
|
90 |
width = gr.Slider(
|
91 |
label="Width",
|
92 |
minimum=256,
|
93 |
maximum=MAX_IMAGE_SIZE,
|
94 |
step=32,
|
95 |
-
value=
|
96 |
)
|
97 |
-
|
98 |
height = gr.Slider(
|
99 |
label="Height",
|
100 |
-
minimum=
|
101 |
maximum=MAX_IMAGE_SIZE,
|
102 |
step=32,
|
103 |
-
value=1024,
|
104 |
)
|
105 |
-
|
106 |
-
with gr.Row():
|
107 |
|
|
|
108 |
guidance_scale = gr.Slider(
|
109 |
-
label="Guidance
|
110 |
-
minimum=
|
111 |
-
maximum=
|
112 |
step=0.1,
|
113 |
-
value=
|
114 |
)
|
115 |
-
|
116 |
num_inference_steps = gr.Slider(
|
117 |
-
label="
|
118 |
minimum=1,
|
119 |
-
maximum=
|
120 |
step=1,
|
121 |
-
value=
|
122 |
)
|
123 |
-
|
124 |
-
gr.Examples(
|
125 |
-
examples = examples,
|
126 |
-
fn = infer,
|
127 |
-
inputs = [prompt],
|
128 |
-
outputs = [result, seed],
|
129 |
-
cache_examples="lazy"
|
130 |
-
)
|
131 |
|
132 |
gr.on(
|
133 |
triggers=[run_button.click, prompt.submit],
|
134 |
-
fn
|
135 |
-
inputs
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
)
|
138 |
|
139 |
-
|
|
|
|
|
140 |
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
4 |
import torch
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
+
from torch import autocast # Usando autocast para otimizar operações em float16
|
|
|
7 |
|
8 |
+
# Verifica se a GPU está disponível
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
model_repo_id = "stabilityai/sdxl-turbo" # Modelo otimizado para velocidade
|
11 |
|
12 |
+
# Usando float16 para otimizar a execução na GPU
|
13 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
|
|
14 |
|
15 |
+
# Carregando o modelo com otimizações
|
16 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)
|
17 |
|
18 |
+
# Max seed
|
19 |
+
MAX_SEED = np.iinfo(np.int32).max
|
20 |
+
MAX_IMAGE_SIZE = 512 # Dimensões menores para acelerar
|
21 |
|
22 |
+
# Função de inferência otimizada
|
23 |
+
def infer(
|
24 |
+
prompt,
|
25 |
+
negative_prompt,
|
26 |
+
seed,
|
27 |
+
randomize_seed,
|
28 |
+
width,
|
29 |
+
height,
|
30 |
+
guidance_scale,
|
31 |
+
num_inference_steps,
|
32 |
+
progress=gr.Progress(track_tqdm=True),
|
33 |
+
):
|
34 |
+
# Randomiza a semente, se necessário
|
35 |
if randomize_seed:
|
36 |
seed = random.randint(0, MAX_SEED)
|
37 |
+
|
38 |
+
generator = torch.Generator(device).manual_seed(seed)
|
39 |
+
|
40 |
+
# Usando autocast para acelerar o cálculo com float16 em GPUs
|
41 |
+
with autocast("cuda"):
|
42 |
+
# Geração da imagem com um número reduzido de passos (para acelerar)
|
43 |
+
image = pipe(
|
44 |
prompt=prompt,
|
45 |
+
negative_prompt=negative_prompt,
|
46 |
guidance_scale=guidance_scale,
|
47 |
num_inference_steps=num_inference_steps,
|
48 |
width=width,
|
49 |
height=height,
|
50 |
generator=generator,
|
51 |
+
).images[0]
|
52 |
+
|
53 |
+
return image, seed
|
54 |
+
|
55 |
+
|
56 |
+
# Exemplos para o Gradio
|
57 |
examples = [
|
58 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 2k",
|
59 |
+
"An astronaut riding a green horse",
|
60 |
+
"A delicious ceviche cheesecake slice",
|
61 |
]
|
62 |
|
63 |
+
css = """
|
64 |
#col-container {
|
65 |
margin: 0 auto;
|
66 |
+
max-width: 640px;
|
67 |
}
|
68 |
"""
|
69 |
|
70 |
with gr.Blocks(css=css) as demo:
|
|
|
71 |
with gr.Column(elem_id="col-container"):
|
72 |
+
gr.Markdown(" # Text-to-Image Gradio Template")
|
73 |
+
|
|
|
|
|
|
|
74 |
with gr.Row():
|
|
|
75 |
prompt = gr.Text(
|
76 |
label="Prompt",
|
77 |
show_label=False,
|
|
|
79 |
placeholder="Enter your prompt",
|
80 |
container=False,
|
81 |
)
|
82 |
+
|
83 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
84 |
+
|
85 |
result = gr.Image(label="Result", show_label=False)
|
86 |
+
|
87 |
with gr.Accordion("Advanced Settings", open=False):
|
88 |
+
negative_prompt = gr.Text(
|
89 |
+
label="Negative prompt",
|
90 |
+
max_lines=1,
|
91 |
+
placeholder="Enter a negative prompt",
|
92 |
+
visible=False,
|
93 |
+
)
|
94 |
+
|
95 |
seed = gr.Slider(
|
96 |
label="Seed",
|
97 |
minimum=0,
|
|
|
99 |
step=1,
|
100 |
value=0,
|
101 |
)
|
102 |
+
|
103 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
104 |
+
|
105 |
with gr.Row():
|
|
|
106 |
width = gr.Slider(
|
107 |
label="Width",
|
108 |
minimum=256,
|
109 |
maximum=MAX_IMAGE_SIZE,
|
110 |
step=32,
|
111 |
+
value=512, # Dimensões reduzidas para otimizar
|
112 |
)
|
113 |
+
|
114 |
height = gr.Slider(
|
115 |
label="Height",
|
116 |
+
minimum=576,
|
117 |
maximum=MAX_IMAGE_SIZE,
|
118 |
step=32,
|
119 |
+
value=1024, # Dimensões reduzidas para otimizar
|
120 |
)
|
|
|
|
|
121 |
|
122 |
+
with gr.Row():
|
123 |
guidance_scale = gr.Slider(
|
124 |
+
label="Guidance scale",
|
125 |
+
minimum=0.0,
|
126 |
+
maximum=10.0,
|
127 |
step=0.1,
|
128 |
+
value=7.5, # Valor adequado para controle
|
129 |
)
|
130 |
+
|
131 |
num_inference_steps = gr.Slider(
|
132 |
+
label="Inference steps",
|
133 |
minimum=1,
|
134 |
+
maximum=30, # Menos passos para otimizar a velocidade
|
135 |
step=1,
|
136 |
+
value=20, # Um valor equilibrado
|
137 |
)
|
138 |
+
|
139 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
gr.on(
|
142 |
triggers=[run_button.click, prompt.submit],
|
143 |
+
fn=infer,
|
144 |
+
inputs=[
|
145 |
+
prompt,
|
146 |
+
negative_prompt,
|
147 |
+
seed,
|
148 |
+
randomize_seed,
|
149 |
+
width,
|
150 |
+
height,
|
151 |
+
guidance_scale,
|
152 |
+
num_inference_steps,
|
153 |
+
],
|
154 |
+
outputs=[result, seed],
|
155 |
)
|
156 |
|
157 |
+
if __name__ == "__main__":
|
158 |
+
demo.launch()
|
159 |
+
|
160 |
|