onnew commited on
Commit
e7efd92
·
verified ·
1 Parent(s): 9e22fd6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -86
app.py CHANGED
@@ -1,77 +1,66 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
4
  import torch
5
- from diffusers import DiffusionPipeline
6
- from torch import autocast # Usando autocast para otimizar operações em float16
 
7
 
8
- # Verifica se a GPU está disponível
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Modelo otimizado para velocidade
11
 
12
- # Usando float16 para otimizar a execução na GPU
13
- torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
 
 
14
 
15
- # Carregando o modelo com otimizações
16
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)
17
-
18
- # Max seed
19
  MAX_SEED = np.iinfo(np.int32).max
20
- MAX_IMAGE_SIZE = 512 # Dimensões menores para acelerar
 
 
21
 
22
- # Função de inferência otimizada
23
- def infer(
24
- prompt,
25
- negative_prompt,
26
- seed,
27
- randomize_seed,
28
- width,
29
- height,
30
- guidance_scale,
31
- num_inference_steps,
32
- progress=gr.Progress(track_tqdm=True),
33
- ):
34
- # Randomiza a semente, se necessário
35
  if randomize_seed:
36
  seed = random.randint(0, MAX_SEED)
37
-
38
- generator = torch.Generator(device).manual_seed(seed)
39
-
40
- # Usando autocast para acelerar o cálculo com float16 em GPUs
41
- with autocast("cuda"):
42
- # Geração da imagem com um número reduzido de passos (para acelerar)
43
- image = pipe(
44
  prompt=prompt,
45
- negative_prompt=negative_prompt,
46
  guidance_scale=guidance_scale,
47
  num_inference_steps=num_inference_steps,
48
  width=width,
49
  height=height,
50
  generator=generator,
51
- ).images[0]
52
-
53
- return image, seed
54
-
55
-
56
- # Exemplos para o Gradio
57
  examples = [
58
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
59
- "An astronaut riding a green horse",
60
- "A delicious ceviche cheesecake slice",
61
  ]
62
 
63
- css = """
64
  #col-container {
65
  margin: 0 auto;
66
- max-width: 640px;
67
  }
68
  """
69
 
70
  with gr.Blocks(css=css) as demo:
 
71
  with gr.Column(elem_id="col-container"):
72
- gr.Markdown(" # Text-to-Image Gradio Template")
73
-
 
 
 
74
  with gr.Row():
 
75
  prompt = gr.Text(
76
  label="Prompt",
77
  show_label=False,
@@ -79,19 +68,13 @@ with gr.Blocks(css=css) as demo:
79
  placeholder="Enter your prompt",
80
  container=False,
81
  )
82
-
83
- run_button = gr.Button("Run", scale=0, variant="primary")
84
-
85
  result = gr.Image(label="Result", show_label=False)
86
-
87
  with gr.Accordion("Advanced Settings", open=False):
88
- negative_prompt = gr.Text(
89
- label="Negative prompt",
90
- max_lines=1,
91
- placeholder="Enter a negative prompt",
92
- visible=False,
93
- )
94
-
95
  seed = gr.Slider(
96
  label="Seed",
97
  minimum=0,
@@ -99,61 +82,59 @@ with gr.Blocks(css=css) as demo:
99
  step=1,
100
  value=0,
101
  )
102
-
103
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
104
-
105
  with gr.Row():
 
106
  width = gr.Slider(
107
  label="Width",
108
  minimum=256,
109
  maximum=MAX_IMAGE_SIZE,
110
  step=32,
111
- value=512, # Dimensões reduzidas para otimizar
112
  )
113
-
114
  height = gr.Slider(
115
  label="Height",
116
  minimum=256,
117
  maximum=MAX_IMAGE_SIZE,
118
  step=32,
119
- value=512, # Dimensões reduzidas para otimizar
120
  )
121
-
122
  with gr.Row():
 
123
  guidance_scale = gr.Slider(
124
- label="Guidance scale",
125
- minimum=0.0,
126
- maximum=10.0,
127
  step=0.1,
128
- value=7.5, # Valor adequado para controle
129
  )
130
-
131
  num_inference_steps = gr.Slider(
132
- label="Inference steps",
133
  minimum=1,
134
- maximum=30, # Menos passos para otimizar a velocidade
135
  step=1,
136
- value=20, # Um valor equilibrado
137
  )
138
-
139
- gr.Examples(examples=examples, inputs=[prompt])
 
 
 
 
 
 
140
 
141
  gr.on(
142
  triggers=[run_button.click, prompt.submit],
143
- fn=infer,
144
- inputs=[
145
- prompt,
146
- negative_prompt,
147
- seed,
148
- randomize_seed,
149
- width,
150
- height,
151
- guidance_scale,
152
- num_inference_steps,
153
- ],
154
- outputs=[result, seed],
155
  )
156
 
157
- if __name__ == "__main__":
158
- demo.launch()
159
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ import spaces
5
  import torch
6
+ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
7
+ from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
+ from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
 
10
+ dtype = torch.bfloat16
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
12
 
13
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
14
+ good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
15
+ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
16
+ torch.cuda.empty_cache()
17
 
 
 
 
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
+ MAX_IMAGE_SIZE = 2048
20
+
21
+ pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
22
 
23
+ @spaces.GPU(duration=75)
24
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
 
 
 
 
 
 
 
 
 
 
 
25
  if randomize_seed:
26
  seed = random.randint(0, MAX_SEED)
27
+ generator = torch.Generator().manual_seed(seed)
28
+
29
+ for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
 
 
 
 
30
  prompt=prompt,
 
31
  guidance_scale=guidance_scale,
32
  num_inference_steps=num_inference_steps,
33
  width=width,
34
  height=height,
35
  generator=generator,
36
+ output_type="pil",
37
+ good_vae=good_vae,
38
+ ):
39
+ yield img, seed
40
+
 
41
  examples = [
42
+ "a tiny astronaut hatching from an egg on the moon",
43
+ "a cat holding a sign that says hello world",
44
+ "an anime illustration of a wiener schnitzel",
45
  ]
46
 
47
+ css="""
48
  #col-container {
49
  margin: 0 auto;
50
+ max-width: 520px;
51
  }
52
  """
53
 
54
  with gr.Blocks(css=css) as demo:
55
+
56
  with gr.Column(elem_id="col-container"):
57
+ gr.Markdown(f"""# FLUX.1 [dev]
58
+ 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
59
+ [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
60
+ """)
61
+
62
  with gr.Row():
63
+
64
  prompt = gr.Text(
65
  label="Prompt",
66
  show_label=False,
 
68
  placeholder="Enter your prompt",
69
  container=False,
70
  )
71
+
72
+ run_button = gr.Button("Run", scale=0)
73
+
74
  result = gr.Image(label="Result", show_label=False)
75
+
76
  with gr.Accordion("Advanced Settings", open=False):
77
+
 
 
 
 
 
 
78
  seed = gr.Slider(
79
  label="Seed",
80
  minimum=0,
 
82
  step=1,
83
  value=0,
84
  )
85
+
86
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
87
+
88
  with gr.Row():
89
+
90
  width = gr.Slider(
91
  label="Width",
92
  minimum=256,
93
  maximum=MAX_IMAGE_SIZE,
94
  step=32,
95
+ value=1024,
96
  )
97
+
98
  height = gr.Slider(
99
  label="Height",
100
  minimum=256,
101
  maximum=MAX_IMAGE_SIZE,
102
  step=32,
103
+ value=1024,
104
  )
105
+
106
  with gr.Row():
107
+
108
  guidance_scale = gr.Slider(
109
+ label="Guidance Scale",
110
+ minimum=1,
111
+ maximum=15,
112
  step=0.1,
113
+ value=3.5,
114
  )
115
+
116
  num_inference_steps = gr.Slider(
117
+ label="Number of inference steps",
118
  minimum=1,
119
+ maximum=50,
120
  step=1,
121
+ value=28,
122
  )
123
+
124
+ gr.Examples(
125
+ examples = examples,
126
+ fn = infer,
127
+ inputs = [prompt],
128
+ outputs = [result, seed],
129
+ cache_examples="lazy"
130
+ )
131
 
132
  gr.on(
133
  triggers=[run_button.click, prompt.submit],
134
+ fn = infer,
135
+ inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
136
+ outputs = [result, seed]
 
 
 
 
 
 
 
 
 
137
  )
138
 
139
+ demo.launch()
 
140