Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
|
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" #
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
|
|
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
26 |
prompt,
|
27 |
negative_prompt,
|
@@ -33,11 +27,13 @@ def infer(
|
|
33 |
num_inference_steps,
|
34 |
progress=gr.Progress(track_tqdm=True),
|
35 |
):
|
|
|
36 |
if randomize_seed:
|
37 |
seed = random.randint(0, MAX_SEED)
|
38 |
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
|
|
|
41 |
image = pipe(
|
42 |
prompt=prompt,
|
43 |
negative_prompt=negative_prompt,
|
@@ -50,7 +46,6 @@ def infer(
|
|
50 |
|
51 |
return image, seed
|
52 |
|
53 |
-
|
54 |
examples = [
|
55 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
"An astronaut riding a green horse",
|
@@ -105,7 +100,7 @@ with gr.Blocks(css=css) as demo:
|
|
105 |
minimum=256,
|
106 |
maximum=MAX_IMAGE_SIZE,
|
107 |
step=32,
|
108 |
-
value=1024, #
|
109 |
)
|
110 |
|
111 |
height = gr.Slider(
|
@@ -113,7 +108,7 @@ with gr.Blocks(css=css) as demo:
|
|
113 |
minimum=256,
|
114 |
maximum=MAX_IMAGE_SIZE,
|
115 |
step=32,
|
116 |
-
value=1024, #
|
117 |
)
|
118 |
|
119 |
with gr.Row():
|
@@ -122,18 +117,19 @@ with gr.Blocks(css=css) as demo:
|
|
122 |
minimum=0.0,
|
123 |
maximum=10.0,
|
124 |
step=0.1,
|
125 |
-
value=
|
126 |
)
|
127 |
|
128 |
num_inference_steps = gr.Slider(
|
129 |
-
label="
|
130 |
minimum=1,
|
131 |
maximum=50,
|
132 |
step=1,
|
133 |
-
value=
|
134 |
)
|
135 |
|
136 |
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
137 |
gr.on(
|
138 |
triggers=[run_button.click, prompt.submit],
|
139 |
fn=infer,
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
|
|
|
|
4 |
import torch
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
model_repo_id = "stabilityai/sdxl-turbo" # Modelo de exemplo (ajuste conforme necessário)
|
9 |
|
10 |
+
# Usando torch.float16 para melhorar a performance com GPUs (se disponível)
|
11 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
|
|
12 |
|
13 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)
|
|
|
14 |
|
15 |
+
# Definindo parâmetros máximos
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
17 |
MAX_IMAGE_SIZE = 1024
|
18 |
|
|
|
|
|
19 |
def infer(
|
20 |
prompt,
|
21 |
negative_prompt,
|
|
|
27 |
num_inference_steps,
|
28 |
progress=gr.Progress(track_tqdm=True),
|
29 |
):
|
30 |
+
# Geração de seed aleatória (caso solicitado)
|
31 |
if randomize_seed:
|
32 |
seed = random.randint(0, MAX_SEED)
|
33 |
|
34 |
+
generator = torch.Generator(device).manual_seed(seed)
|
35 |
|
36 |
+
# Definindo uma resolução menor para acelerar a execução (ajuste conforme necessário)
|
37 |
image = pipe(
|
38 |
prompt=prompt,
|
39 |
negative_prompt=negative_prompt,
|
|
|
46 |
|
47 |
return image, seed
|
48 |
|
|
|
49 |
examples = [
|
50 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
51 |
"An astronaut riding a green horse",
|
|
|
100 |
minimum=256,
|
101 |
maximum=MAX_IMAGE_SIZE,
|
102 |
step=32,
|
103 |
+
value=1024, # Valor de default
|
104 |
)
|
105 |
|
106 |
height = gr.Slider(
|
|
|
108 |
minimum=256,
|
109 |
maximum=MAX_IMAGE_SIZE,
|
110 |
step=32,
|
111 |
+
value=1024, # Valor de default
|
112 |
)
|
113 |
|
114 |
with gr.Row():
|
|
|
117 |
minimum=0.0,
|
118 |
maximum=10.0,
|
119 |
step=0.1,
|
120 |
+
value=7.5, # Valor de default mais alto para mais controle
|
121 |
)
|
122 |
|
123 |
num_inference_steps = gr.Slider(
|
124 |
+
label="Inference steps",
|
125 |
minimum=1,
|
126 |
maximum=50,
|
127 |
step=1,
|
128 |
+
value=20, # Aumenta para melhorar a qualidade se necessário
|
129 |
)
|
130 |
|
131 |
gr.Examples(examples=examples, inputs=[prompt])
|
132 |
+
|
133 |
gr.on(
|
134 |
triggers=[run_button.click, prompt.submit],
|
135 |
fn=infer,
|