Spaces:
Runtime error
Runtime error
File size: 12,034 Bytes
9982b19 d72e6ae 632f592 9982b19 632f592 ab391c2 d72e6ae b225b76 9982b19 ab391c2 6fd0103 82312a4 c62bc4a 82312a4 5720fe4 b225b76 a04f2e1 9982b19 a04f2e1 9982b19 82312a4 9982b19 82312a4 9982b19 82312a4 9982b19 82312a4 9982b19 411ad3b 9982b19 82312a4 9982b19 411ad3b d72e6ae 062ca1d 9982b19 82312a4 9982b19 d72e6ae 9982b19 82312a4 4aafa13 93fda42 ab391c2 93fda42 9982b19 d72e6ae ba5c790 9982b19 aa518eb 9982b19 411ad3b aa518eb 411ad3b 9982b19 ba5c790 9982b19 d72e6ae 82312a4 861cd57 82312a4 c62bc4a 82312a4 632f592 c62bc4a d72e6ae 82312a4 9982b19 82312a4 9982b19 82312a4 9982b19 82312a4 9982b19 82312a4 d72e6ae 82312a4 9982b19 93fda42 9982b19 82312a4 c8c85f9 9982b19 82312a4 9982b19 c8c85f9 9982b19 82312a4 9982b19 892e2f9 82312a4 9982b19 82312a4 9982b19 93fda42 9982b19 240511e 9982b19 82312a4 9982b19 d72e6ae f9b4329 82312a4 a04f2e1 9982b19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import os
from sys import exit
import torch
import trl
from transformers import (
AutoTokenizer, LlamaConfig, AutoModelForCausalLM, LlamaForCausalLM,
TrainingArguments, PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
)
from datasets import load_dataset, Dataset
from tokenizers import ByteLevelBPETokenizer
from huggingface_hub import HfApi
from trl import SFTConfig, SFTTrainer
from torch.utils.data import DataLoader
from itertools import islice
class Config:
def __init__(self):
# Model and training hyperparameters
self.BATCH_SIZE = 16
self.EPOCHS = 3
self.LEARNING_RATE = 2e-4
self.MAX_SEQ_LENGTH = 512
self.VOCAB_SIZE = 32000
self.FP16 = True
self.WEIGHT_DECAY = 1e-3
self.GRADIENT_ACCUMULATION_STEPS = self.BATCH_SIZE // 4
# Dataset configurations
self.INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
self.INSTRUCT_DATASET = "nroggendorff/elephant"
self.SHARD_SIZE = int(2e+5)
# Output and repo settings
self.OUTPUT_REPO = "nroggendorff/smallama"
self.PUSH_TO_HUB = True
self.INSTRUCT_FINETUNE_BOOL = False
# Training steps and warmup
self.FACTOR = 12 ** 3 // 2
self.TOTAL_STEPS = (self.SHARD_SIZE * self.EPOCHS) // (self.BATCH_SIZE * self.GRADIENT_ACCUMULATION_STEPS)
self.WARMUP_STEPS = int(self.TOTAL_STEPS * 0.1)
# Initial state for shard offset
self.INIT = 0
# ignore
self.getConfig = lambda: self._args()
# @staticmethod
def _args(self):
return SFTConfig(
output_dir="model",
num_train_epochs=self.EPOCHS,
per_device_train_batch_size=self.BATCH_SIZE,
learning_rate=self.LEARNING_RATE,
warmup_steps=self.WARMUP_STEPS,
weight_decay=self.WEIGHT_DECAY,
gradient_accumulation_steps=self.GRADIENT_ACCUMULATION_STEPS,
fp16=self.FP16,
save_steps=int(self.WARMUP_STEPS * 5),
logging_steps=int(self.WARMUP_STEPS),
save_total_limit=2,
report_to="none",
)
config = Config()
class Space:
def __init__(self):
self.api = HfApi()
self.pause = lambda: self.api.pause_space("nroggendorff/train-llama")
class FineError(Exception):
def __init__(self, message="Script execution has completed."):
self.message = message
super().__init__(self.message)
def load_data():
if not config.INSTRUCT_FINETUNE_BOOL:
dataset = load_dataset(config.INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
else:
dataset = load_dataset(config.INSTRUCT_DATASET, split="train", streaming=True)
start = config.INIT * config.SHARD_SIZE
data_list = list(islice(dataset, start, start + config.SHARD_SIZE))
dataset = Dataset.from_dict({'text': [example['text'] for example in data_list]})
return dataset
def encode_decode(texts, tok):
if tok.pad_token is None:
tok.pad_token = tok.eos_token
tokenized_texts = tok(
texts,
padding="max_length",
truncation=True,
max_length=config.MAX_SEQ_LENGTH,
return_tensors="pt"
).input_ids
if tokenized_texts.dim() >= 1:
decoded_texts = tok.batch_decode(tokenized_texts)
else:
print('Found invalid entry in examples. Returning dummy..')
decoded_texts = [tok.pad_token * config.MAX_SEQ_LENGTH]
islist = not len(decoded_texts) == 1
return decoded_texts if islist else decoded_texts[0]
def create_tokenizer(training_corpus):
tokenizer = ByteLevelBPETokenizer()
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
tokenizer.train_from_iterator(
training_corpus,
vocab_size=config.VOCAB_SIZE,
min_frequency=2,
special_tokens=special_tokens
)
fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
return fast_tokenizer
def load_tokenizer():
return AutoTokenizer.from_pretrained(config.OUTPUT_REPO + '-it' if config.INSTRUCT_FINETUNE_BOOL else config.OUTPUT_REPO)
def get_training_corpus(dataset):
for i in range(0, len(dataset['text']), 1000):
yield dataset['text'][i : i + 1000]
def format_prompts(examples, tokenizer, isinst):
texts = []
for text in examples['text']:
if text and len(text.strip()) > 0:
if isinst:
conversation = []
parts = text.split('<|end|>')
for i in range(0, len(parts) - 1, 2):
prompt = parts[i].replace("<|user|>", "").strip()
response = parts[i + 1].replace("<|bot|>", "").strip()
conversation.append({"role": "user", "content": prompt})
conversation.append({"role": "assistant", "content": response})
formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
coded_text = tokenizer.code(formatted_conversation)
texts.append(coded_text)
else:
texts.append(tokenizer.bos_token + tokenizer.code(text) + tokenizer.eos_token)
else:
print('Found empty entry in examples. Moving on..')
continue
if len(texts) == 0:
raise ValueError("No valid texts found in examples for formatting.")
coded_texts = tokenizer.code(texts)
return {'text': coded_texts}
def create_model(tokenizer):
model_config = LlamaConfig(
vocab_size=tokenizer.vocab_size,
hidden_size=config.FACTOR,
intermediate_size=config.FACTOR * 4,
num_hidden_layers=config.FACTOR // 2 ** 4,
num_attention_heads=config.FACTOR // 2 ** 5,
max_position_embeddings=config.MAX_SEQ_LENGTH,
rms_norm_eps=1e-5,
initializer_range=2e-2,
use_cache=True,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
tie_word_embeddings=False,
)
return LlamaForCausalLM(model_config)
def load_model():
return AutoModelForCausalLM.from_pretrained(config.OUTPUT_REPO + '-it' if config.INSTRUCT_FINETUNE_BOOL else config.OUTPUT_REPO)
def configure_tokenizer(tokenizer):
special_tokens = {
"bos_token": "<s>",
"eos_token": "</s>",
"unk_token": "<unk>",
"pad_token": "<pad>",
"mask_token": "<mask>",
"additional_special_tokens": []
}
if config.INSTRUCT_FINETUNE_BOOL:
special_tokens["additional_special_tokens"] = ["<|user|>", "<|bot|>", "<|end|>"]
tokenizer.add_special_tokens(special_tokens)
if config.INSTRUCT_FINETUNE_BOOL:
tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
tokenizer.chat_template = chat_template
tokenizer.code = lambda example: encode_decode(example, tokenizer)
def update_tokenizer(tokenizer, dataset, batch_size=1000):
existing_vocab = tokenizer.get_vocab()
oov_tokens = set()
for i in range(0, len(dataset['text']), batch_size):
batch = dataset['text'][i:i + batch_size]
for text in batch:
token_ids = tokenizer.encode(text, add_special_tokens=False)
for token_id in token_ids:
token = tokenizer.decode([token_id])
if token.strip() and token not in existing_vocab:
oov_tokens.add(token)
if oov_tokens:
num_added = tokenizer.add_tokens(list(oov_tokens))
return num_added
return 0
def train_model(model, tokenizer, dataset, push, isinst):
args = config.getConfig()
optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=config.WEIGHT_DECAY)
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=total_steps
)
dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer, isinst), batched=True, remove_columns=dataset.column_names)
if 'text' not in dataset.column_names:
raise ValueError("Dataset transformation failed: 'text' column missing after mapping.")
print("Mapped dataset sample length:", len(dataset[0]['text']))
try:
test_input = tokenizer(
["This is a test input."],
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=MAX_SEQ_LENGTH
)
test_output = model(**test_input)
print("Model test output shape:", test_output.logits.shape)
except RuntimeError as e:
print(f"Error processing test batch: {e}")
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
args=args,
train_dataset=dataset,
# dataset_text_field='text',
max_seq_length=config.MAX_SEQ_LENGTH,
optimizers=(optimizer, scheduler)
)
train = trainer.train()
trained_model = trainer.model
trained_tokenizer = trainer.tokenizer
if push:
repo_id = config.OUTPUT_REPO + "-it" if config.INSTRUCT_FINETUNE_BOOL else config.OUTPUT_REPO
msg = f"Training loss: {train.training_loss:.4f}"
trained_model.push_to_hub(repo_id, commit_message=msg, force=True)
trained_tokenizer.push_to_hub(repo_id, commit_message=msg, force=True)
else:
trained_model.save_pretrained("model")
trained_tokenizer.save_pretrained("tokenizer")
def main(push_to_hub=True, is_inst_finetune=config.INSTRUCT_FINETUNE_BOOL):
print("Loading Data..")
dataset = load_data()
print("Loaded data.")
if is_inst_finetune and config.INIT > 0:
print("Loading Tokenizer..")
tokenizer = load_tokenizer()
print("Loaded Tokenizer.")
else:
print("Making Corpus..")
training_corpus = get_training_corpus(dataset)
print("Made Corpus.")
print("Making Tokenizer..")
tokenizer = create_tokenizer(training_corpus)
print(f"Made Tokenizer with size {len(tokenizer)}.")
# print("Adding Tokens..")
# num_new_tokens = update_tokenizer(tokenizer, dataset)
# print(f"Added {num_new_tokens} new tokens to the vocabulary")
if config.INIT == 0:
print("Adding Special Tokens..")
configure_tokenizer(tokenizer)
print("Added Tokens.")
if is_inst_finetune or config.INIT > 0:
print("Loading Model..")
model = load_model()
print("Loaded Model.")
else:
print("Creating Model..")
model = create_model(tokenizer)
print("Created Model.")
print(f"Tokenizer vocabulary size: {len(tokenizer)}")
print(f"Special tokens: {tokenizer.special_tokens_map}")
print("Resizing Token Embeddings..")
try:
model.resize_token_embeddings(len(tokenizer))
except RuntimeError as e:
raise RuntimeError(f"Error resizing token embeddings: {e}")
print("Resized Embeddings.")
print("Training Model..")
train_model(model, tokenizer, dataset, push_to_hub, is_inst_finetune)
raise FineError("Trained Model.")
if __name__ == "__main__":
try:
main()
except Exception as e:
print(f'{type(e).__name__}: {e}')
Space().pause() |