Spaces:
Runtime error
Runtime error
frick
Browse filesim never using chatgpt again
train.py
CHANGED
@@ -1,117 +1,107 @@
|
|
|
|
|
|
|
|
1 |
import trl
|
2 |
from transformers import (
|
3 |
-
AutoTokenizer, LlamaConfig, LlamaForCausalLM,
|
4 |
-
PreTrainedTokenizerFast
|
5 |
)
|
6 |
-
from trl import SFTConfig, SFTTrainer
|
7 |
from datasets import load_dataset, Dataset
|
8 |
from tokenizers import ByteLevelBPETokenizer
|
9 |
from huggingface_hub import HfApi
|
|
|
|
|
10 |
from itertools import islice
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
logger.setLevel(INFO)
|
16 |
-
handler = StreamHandler()
|
17 |
-
logger.addHandler(handler)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
# Model and training hyperparameters
|
22 |
-
self.BATCH_SIZE = 16
|
23 |
-
self.EPOCHS = 3
|
24 |
-
self.LEARNING_RATE = 2e-4
|
25 |
-
self.MAX_SEQ_LENGTH = 512
|
26 |
-
self.VOCAB_SIZE = 32000
|
27 |
-
self.FP16 = True
|
28 |
-
self.WEIGHT_DECAY = 1e-3
|
29 |
-
self.GRADIENT_ACCUMULATION_STEPS = self.BATCH_SIZE // 4
|
30 |
-
|
31 |
-
# Dataset configurations
|
32 |
-
self.INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
|
33 |
-
self.INSTRUCT_DATASET = "nroggendorff/elephant"
|
34 |
-
self.SHARD_SIZE = int(2e+5)
|
35 |
-
|
36 |
-
# Output and repo settings
|
37 |
-
self.OUTPUT_REPO = "nroggendorff/smallama"
|
38 |
-
self.PUSH_TO_HUB = True
|
39 |
-
self.INSTRUCT_FINETUNE_BOOL = False
|
40 |
-
|
41 |
-
# Training steps and warmup
|
42 |
-
self.FACTOR = 12 ** 3 // 3
|
43 |
-
self.TOTAL_STEPS = (self.SHARD_SIZE * self.EPOCHS) // (self.BATCH_SIZE * self.GRADIENT_ACCUMULATION_STEPS)
|
44 |
-
self.WARMUP_STEPS = int(self.TOTAL_STEPS * 0.1)
|
45 |
-
|
46 |
-
# Initial state for shard offset
|
47 |
-
self.INIT = 0
|
48 |
-
|
49 |
-
# ignore
|
50 |
-
self.getConfig = lambda: self._args()
|
51 |
-
|
52 |
-
# @staticmethod
|
53 |
-
def _args(self):
|
54 |
-
return SFTConfig(
|
55 |
-
output_dir="model",
|
56 |
-
num_train_epochs=self.EPOCHS,
|
57 |
-
per_device_train_batch_size=self.BATCH_SIZE,
|
58 |
-
learning_rate=self.LEARNING_RATE,
|
59 |
-
warmup_steps=self.WARMUP_STEPS,
|
60 |
-
weight_decay=self.WEIGHT_DECAY,
|
61 |
-
gradient_accumulation_steps=self.GRADIENT_ACCUMULATION_STEPS,
|
62 |
-
fp16=self.FP16,
|
63 |
-
save_steps=int(self.WARMUP_STEPS * 5),
|
64 |
-
logging_steps=int(self.WARMUP_STEPS),
|
65 |
-
save_total_limit=2,
|
66 |
-
report_to="none",
|
67 |
-
)
|
68 |
-
|
69 |
-
config = Config().getConfig()
|
70 |
|
71 |
class Space:
|
72 |
def __init__(self):
|
73 |
self.api = HfApi()
|
74 |
self.pause = lambda: self.api.pause_space("nroggendorff/train-llama")
|
75 |
|
76 |
-
space = Space()
|
77 |
-
|
78 |
class FineError(Exception):
|
79 |
-
def __init__(self, message="
|
80 |
self.message = message
|
81 |
super().__init__(self.message)
|
82 |
|
83 |
-
def load_data(
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
).input_ids
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
def create_tokenizer(training_corpus):
|
98 |
tokenizer = ByteLevelBPETokenizer()
|
99 |
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
|
100 |
-
tokenizer.train_from_iterator(
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
def load_tokenizer(
|
104 |
-
return AutoTokenizer.from_pretrained(
|
105 |
|
106 |
def get_training_corpus(dataset):
|
107 |
for i in range(0, len(dataset['text']), 1000):
|
108 |
yield dataset['text'][i : i + 1000]
|
109 |
|
110 |
-
def format_prompts(examples, tokenizer,
|
111 |
texts = []
|
112 |
for text in examples['text']:
|
113 |
if text and len(text.strip()) > 0:
|
114 |
-
if
|
115 |
conversation = []
|
116 |
parts = text.split('<|end|>')
|
117 |
for i in range(0, len(parts) - 1, 2):
|
@@ -119,22 +109,29 @@ def format_prompts(examples, tokenizer, is_instructional):
|
|
119 |
response = parts[i + 1].replace("<|bot|>", "").strip()
|
120 |
conversation.append({"role": "user", "content": prompt})
|
121 |
conversation.append({"role": "assistant", "content": response})
|
122 |
-
|
|
|
123 |
texts.append(coded_text)
|
124 |
else:
|
125 |
texts.append(tokenizer.bos_token + tokenizer.code(text) + tokenizer.eos_token)
|
126 |
-
|
|
|
|
|
|
|
|
|
127 |
raise ValueError("No valid texts found in examples for formatting.")
|
128 |
-
|
|
|
|
|
129 |
|
130 |
def create_model(tokenizer):
|
131 |
-
|
132 |
vocab_size=tokenizer.vocab_size,
|
133 |
-
hidden_size=
|
134 |
-
intermediate_size=
|
135 |
num_hidden_layers=12,
|
136 |
num_attention_heads=12,
|
137 |
-
max_position_embeddings=
|
138 |
rms_norm_eps=1e-5,
|
139 |
initializer_range=0.02,
|
140 |
use_cache=True,
|
@@ -143,47 +140,177 @@ def create_model(tokenizer):
|
|
143 |
eos_token_id=tokenizer.eos_token_id,
|
144 |
tie_word_embeddings=False,
|
145 |
)
|
146 |
-
return LlamaForCausalLM(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
)
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
model=model,
|
156 |
tokenizer=tokenizer,
|
157 |
-
|
158 |
-
train_dataset=dataset
|
|
|
|
|
|
|
159 |
)
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
166 |
else:
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
if __name__ == "__main__":
|
185 |
try:
|
186 |
-
main()
|
187 |
except Exception as e:
|
188 |
-
|
189 |
-
|
|
|
1 |
+
import os
|
2 |
+
from sys import exit
|
3 |
+
import torch
|
4 |
import trl
|
5 |
from transformers import (
|
6 |
+
AutoTokenizer, LlamaConfig, AutoModelForCausalLM, LlamaForCausalLM,
|
7 |
+
TrainingArguments, PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
|
8 |
)
|
|
|
9 |
from datasets import load_dataset, Dataset
|
10 |
from tokenizers import ByteLevelBPETokenizer
|
11 |
from huggingface_hub import HfApi
|
12 |
+
from trl import SFTConfig, SFTTrainer
|
13 |
+
from torch.utils.data import DataLoader
|
14 |
from itertools import islice
|
15 |
|
16 |
+
BATCH_SIZE = 16
|
17 |
+
EPOCHS = 3
|
18 |
+
LEARNING_RATE = 2e-4
|
19 |
+
FACTOR = 12 ** 3 // 3
|
20 |
+
MAX_SEQ_LENGTH = 512
|
21 |
+
VOCAB_SIZE = 32000
|
22 |
+
INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
|
23 |
+
INSTRUCT_DATASET = "nroggendorff/elephant"
|
24 |
+
OUTPUT_REPO = "nroggendorff/smallama"
|
25 |
+
INSTRUCT_FINETUNE_BOOL = False
|
26 |
+
INIT = 0
|
27 |
+
SHARD_SIZE = int(2e+5)
|
28 |
+
FP16 = True
|
29 |
+
WEIGHT_DECAY = 1e-3
|
30 |
+
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // 4
|
31 |
|
32 |
+
PUSH_TO_HUB = True
|
|
|
|
|
|
|
33 |
|
34 |
+
total_steps = (SHARD_SIZE * EPOCHS) // (BATCH_SIZE * GRADIENT_ACCUMULATION_STEPS)
|
35 |
+
WARMUP_STEPS = total_steps * 0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
class Space:
|
38 |
def __init__(self):
|
39 |
self.api = HfApi()
|
40 |
self.pause = lambda: self.api.pause_space("nroggendorff/train-llama")
|
41 |
|
|
|
|
|
42 |
class FineError(Exception):
|
43 |
+
def __init__(self, message="Script execution has completed."):
|
44 |
self.message = message
|
45 |
super().__init__(self.message)
|
46 |
|
47 |
+
def load_data():
|
48 |
+
if not INSTRUCT_FINETUNE_BOOL:
|
49 |
+
dataset = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
|
50 |
+
else:
|
51 |
+
dataset = load_dataset(INSTRUCT_DATASET, split="train", streaming=True)
|
52 |
+
|
53 |
+
start = INIT * SHARD_SIZE
|
54 |
+
data_list = list(islice(dataset, start, start + SHARD_SIZE))
|
55 |
+
|
56 |
+
dataset = Dataset.from_dict({'text': [example['text'] for example in data_list]})
|
57 |
+
return dataset
|
58 |
+
|
59 |
+
def encode_decode(texts, tok):
|
60 |
+
if tok.pad_token is None:
|
61 |
+
tok.pad_token = tok.eos_token
|
62 |
+
|
63 |
+
tokenized_texts = tok(
|
64 |
+
texts,
|
65 |
+
padding="max_length",
|
66 |
+
truncation=True,
|
67 |
+
max_length=MAX_SEQ_LENGTH,
|
68 |
+
return_tensors="pt"
|
69 |
).input_ids
|
70 |
+
|
71 |
+
if tokenized_texts.dim() >= 1:
|
72 |
+
decoded_texts = tok.batch_decode(tokenized_texts)
|
73 |
+
else:
|
74 |
+
print('Found invalid entry in examples. Returning dummy..')
|
75 |
+
decoded_texts = [tokenizer.pad_token * MAX_SEQ_LENGTH]
|
76 |
+
|
77 |
+
islist = not len(decoded_texts) == 1
|
78 |
+
|
79 |
+
return decoded_texts if islist else decoded_texts[0]
|
80 |
|
81 |
def create_tokenizer(training_corpus):
|
82 |
tokenizer = ByteLevelBPETokenizer()
|
83 |
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
|
84 |
+
tokenizer.train_from_iterator(
|
85 |
+
training_corpus,
|
86 |
+
vocab_size=VOCAB_SIZE,
|
87 |
+
min_frequency=2,
|
88 |
+
special_tokens=special_tokens
|
89 |
+
)
|
90 |
+
fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
|
91 |
+
return fast_tokenizer
|
92 |
|
93 |
+
def load_tokenizer():
|
94 |
+
return AutoTokenizer.from_pretrained(OUTPUT_REPO + '-it' if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO)
|
95 |
|
96 |
def get_training_corpus(dataset):
|
97 |
for i in range(0, len(dataset['text']), 1000):
|
98 |
yield dataset['text'][i : i + 1000]
|
99 |
|
100 |
+
def format_prompts(examples, tokenizer, isinst):
|
101 |
texts = []
|
102 |
for text in examples['text']:
|
103 |
if text and len(text.strip()) > 0:
|
104 |
+
if isinst:
|
105 |
conversation = []
|
106 |
parts = text.split('<|end|>')
|
107 |
for i in range(0, len(parts) - 1, 2):
|
|
|
109 |
response = parts[i + 1].replace("<|bot|>", "").strip()
|
110 |
conversation.append({"role": "user", "content": prompt})
|
111 |
conversation.append({"role": "assistant", "content": response})
|
112 |
+
formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
|
113 |
+
coded_text = tokenizer.code(formatted_conversation)
|
114 |
texts.append(coded_text)
|
115 |
else:
|
116 |
texts.append(tokenizer.bos_token + tokenizer.code(text) + tokenizer.eos_token)
|
117 |
+
else:
|
118 |
+
print('Found empty entry in examples. Moving on..')
|
119 |
+
continue
|
120 |
+
|
121 |
+
if len(texts) == 0:
|
122 |
raise ValueError("No valid texts found in examples for formatting.")
|
123 |
+
|
124 |
+
coded_texts = tokenizer.code(texts)
|
125 |
+
return {'text': coded_texts}
|
126 |
|
127 |
def create_model(tokenizer):
|
128 |
+
config = LlamaConfig(
|
129 |
vocab_size=tokenizer.vocab_size,
|
130 |
+
hidden_size=FACTOR,
|
131 |
+
intermediate_size=FACTOR * 4,
|
132 |
num_hidden_layers=12,
|
133 |
num_attention_heads=12,
|
134 |
+
max_position_embeddings=MAX_SEQ_LENGTH,
|
135 |
rms_norm_eps=1e-5,
|
136 |
initializer_range=0.02,
|
137 |
use_cache=True,
|
|
|
140 |
eos_token_id=tokenizer.eos_token_id,
|
141 |
tie_word_embeddings=False,
|
142 |
)
|
143 |
+
return LlamaForCausalLM(config)
|
144 |
+
|
145 |
+
def load_model():
|
146 |
+
return AutoModelForCausalLM.from_pretrained(OUTPUT_REPO + '-it' if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO)
|
147 |
+
|
148 |
+
def configure_tokenizer(tokenizer):
|
149 |
+
special_tokens = {
|
150 |
+
"bos_token": "<s>",
|
151 |
+
"eos_token": "</s>",
|
152 |
+
"unk_token": "<unk>",
|
153 |
+
"pad_token": "<pad>",
|
154 |
+
"mask_token": "<mask>",
|
155 |
+
"additional_special_tokens": []
|
156 |
+
}
|
157 |
+
if INSTRUCT_FINETUNE_BOOL:
|
158 |
+
special_tokens["additional_special_tokens"] = ["<|user|>", "<|bot|>", "<|end|>"]
|
159 |
+
tokenizer.add_special_tokens(special_tokens)
|
160 |
+
|
161 |
+
if INSTRUCT_FINETUNE_BOOL:
|
162 |
+
tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
|
163 |
+
tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
|
164 |
+
|
165 |
+
chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
|
166 |
+
tokenizer.chat_template = chat_template
|
167 |
+
|
168 |
+
tokenizer.code = lambda example: encode_decode(example, tokenizer)
|
169 |
+
|
170 |
+
def update_tokenizer(tokenizer, dataset, batch_size=1000):
|
171 |
+
existing_vocab = tokenizer.get_vocab()
|
172 |
+
oov_tokens = set()
|
173 |
+
|
174 |
+
for i in range(0, len(dataset['text']), batch_size):
|
175 |
+
batch = dataset['text'][i:i + batch_size]
|
176 |
+
|
177 |
+
for text in batch:
|
178 |
+
token_ids = tokenizer.encode(text, add_special_tokens=False)
|
179 |
+
|
180 |
+
for token_id in token_ids:
|
181 |
+
token = tokenizer.decode([token_id])
|
182 |
+
if token.strip() and token not in existing_vocab:
|
183 |
+
oov_tokens.add(token)
|
184 |
+
|
185 |
+
if oov_tokens:
|
186 |
+
num_added = tokenizer.add_tokens(list(oov_tokens))
|
187 |
+
return num_added
|
188 |
+
|
189 |
+
return 0
|
190 |
+
|
191 |
+
def train_model(model, tokenizer, dataset, push, isinst):
|
192 |
+
args = SFTConfig(
|
193 |
+
output_dir="model",
|
194 |
+
num_train_epochs=EPOCHS,
|
195 |
+
per_device_train_batch_size=BATCH_SIZE,
|
196 |
+
learning_rate=LEARNING_RATE,
|
197 |
+
optim="adamw_torch",
|
198 |
+
warmup_steps=WARMUP_STEPS,
|
199 |
+
weight_decay=WEIGHT_DECAY,
|
200 |
+
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
|
201 |
+
fp16=FP16,
|
202 |
+
save_steps=WARMUP_STEPS * 5,
|
203 |
+
logging_steps=WARMUP_STEPS,
|
204 |
+
eval_strategy="no",
|
205 |
+
report_to="no",
|
206 |
+
# eval_steps=WARMUP_STEPS,
|
207 |
+
save_total_limit=2,
|
208 |
+
)
|
209 |
|
210 |
+
optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=WEIGHT_DECAY)
|
211 |
+
scheduler = get_cosine_schedule_with_warmup(
|
212 |
+
optimizer,
|
213 |
+
num_warmup_steps=args.warmup_steps,
|
214 |
+
num_training_steps=total_steps
|
215 |
)
|
216 |
+
|
217 |
+
dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer, isinst), batched=True, remove_columns=dataset.column_names)
|
218 |
+
|
219 |
+
if 'text' not in dataset.column_names:
|
220 |
+
raise ValueError("Dataset transformation failed: 'text' column missing after mapping.")
|
221 |
+
|
222 |
+
print("Mapped dataset sample length:", len(dataset[0]['text']))
|
223 |
+
|
224 |
+
try:
|
225 |
+
test_input = tokenizer(
|
226 |
+
["This is a test input."],
|
227 |
+
return_tensors="pt",
|
228 |
+
padding="max_length",
|
229 |
+
truncation=True,
|
230 |
+
max_length=MAX_SEQ_LENGTH
|
231 |
+
)
|
232 |
+
test_output = model(**test_input)
|
233 |
+
print("Model test output shape:", test_output.logits.shape)
|
234 |
+
except RuntimeError as e:
|
235 |
+
print(f"Error processing test batch: {e}")
|
236 |
+
|
237 |
+
trainer = trl.SFTTrainer(
|
238 |
model=model,
|
239 |
tokenizer=tokenizer,
|
240 |
+
args=args,
|
241 |
+
train_dataset=dataset,
|
242 |
+
# dataset_text_field='text',
|
243 |
+
max_seq_length=MAX_SEQ_LENGTH,
|
244 |
+
optimizers=(optimizer, scheduler)
|
245 |
)
|
246 |
+
|
247 |
+
train = trainer.train()
|
248 |
+
|
249 |
+
trained_model = trainer.model
|
250 |
+
trained_tokenizer = trainer.tokenizer
|
251 |
+
|
252 |
+
if push:
|
253 |
+
repo_id = OUTPUT_REPO + "-it" if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO
|
254 |
+
msg = f"Training loss: {train.training_loss:.4f}"
|
255 |
+
trained_model.push_to_hub(repo_id, commit_message=msg, force=True)
|
256 |
+
trained_tokenizer.push_to_hub(repo_id, commit_message=msg, force=True)
|
257 |
+
else:
|
258 |
+
trained_model.save_pretrained("model")
|
259 |
+
trained_tokenizer.save_pretrained("tokenizer")
|
260 |
|
261 |
+
def main(push_to_hub=True, is_inst_finetune=False):
|
262 |
+
print("Loading Data..")
|
263 |
+
dataset = load_data()
|
264 |
+
print("Loaded data.")
|
265 |
+
|
266 |
+
if is_inst_finetune and INIT > 0:
|
267 |
+
print("Loading Tokenizer..")
|
268 |
+
tokenizer = load_tokenizer()
|
269 |
+
print("Loaded Tokenizer.")
|
270 |
else:
|
271 |
+
print("Making Corpus..")
|
272 |
+
training_corpus = get_training_corpus(dataset)
|
273 |
+
print("Made Corpus.")
|
274 |
+
|
275 |
+
print("Making Tokenizer..")
|
276 |
+
tokenizer = create_tokenizer(training_corpus)
|
277 |
+
print(f"Made Tokenizer with size {len(tokenizer)}.")
|
278 |
+
|
279 |
+
# print("Adding Tokens..")
|
280 |
+
# num_new_tokens = update_tokenizer(tokenizer, dataset)
|
281 |
+
# print(f"Added {num_new_tokens} new tokens to the vocabulary")
|
282 |
+
|
283 |
+
if INIT == 0:
|
284 |
+
print("Adding Special Tokens..")
|
285 |
+
configure_tokenizer(tokenizer)
|
286 |
+
print("Added Tokens.")
|
287 |
+
|
288 |
+
if is_inst_finetune or INIT > 0:
|
289 |
+
print("Loading Model..")
|
290 |
+
model = load_model()
|
291 |
+
print("Loaded Model.")
|
292 |
+
else:
|
293 |
+
print("Creating Model..")
|
294 |
+
model = create_model(tokenizer)
|
295 |
+
print("Created Model.")
|
296 |
+
|
297 |
+
print(f"Tokenizer vocabulary size: {len(tokenizer)}")
|
298 |
+
print(f"Special tokens: {tokenizer.special_tokens_map}")
|
299 |
+
|
300 |
+
print("Resizing Token Embeddings..")
|
301 |
+
try:
|
302 |
+
model.resize_token_embeddings(len(tokenizer))
|
303 |
+
except RuntimeError as e:
|
304 |
+
raise RuntimeError(f"Error resizing token embeddings: {e}")
|
305 |
+
print("Resized Embeddings.")
|
306 |
+
|
307 |
+
print("Training Model..")
|
308 |
+
train_model(model, tokenizer, dataset, push_to_hub, is_inst_finetune)
|
309 |
+
raise FineError("Trained Model.")
|
310 |
|
311 |
if __name__ == "__main__":
|
312 |
try:
|
313 |
+
main(PUSH_TO_HUB, INSTRUCT_FINETUNE_BOOL)
|
314 |
except Exception as e:
|
315 |
+
print(f'{type(e).__name__}: {e}')
|
316 |
+
Space().pause()
|