Spaces:
Paused
Paused
Update train.py
Browse filesits gonna take a while to fix all of these issues
train.py
CHANGED
@@ -13,26 +13,57 @@ from trl import SFTConfig, SFTTrainer
|
|
13 |
from torch.utils.data import DataLoader
|
14 |
from itertools import islice
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
class Space:
|
38 |
def __init__(self):
|
@@ -45,13 +76,13 @@ class FineError(Exception):
|
|
45 |
super().__init__(self.message)
|
46 |
|
47 |
def load_data():
|
48 |
-
if not INSTRUCT_FINETUNE_BOOL:
|
49 |
-
dataset = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
|
50 |
else:
|
51 |
-
dataset = load_dataset(INSTRUCT_DATASET, split="train", streaming=True)
|
52 |
|
53 |
-
start = INIT * SHARD_SIZE
|
54 |
-
data_list = list(islice(dataset, start, start + SHARD_SIZE))
|
55 |
|
56 |
dataset = Dataset.from_dict({'text': [example['text'] for example in data_list]})
|
57 |
return dataset
|
@@ -64,7 +95,7 @@ def encode_decode(texts, tok):
|
|
64 |
texts,
|
65 |
padding="max_length",
|
66 |
truncation=True,
|
67 |
-
max_length=MAX_SEQ_LENGTH,
|
68 |
return_tensors="pt"
|
69 |
).input_ids
|
70 |
|
@@ -72,7 +103,7 @@ def encode_decode(texts, tok):
|
|
72 |
decoded_texts = tok.batch_decode(tokenized_texts)
|
73 |
else:
|
74 |
print('Found invalid entry in examples. Returning dummy..')
|
75 |
-
decoded_texts = [
|
76 |
|
77 |
islist = not len(decoded_texts) == 1
|
78 |
|
@@ -83,7 +114,7 @@ def create_tokenizer(training_corpus):
|
|
83 |
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
|
84 |
tokenizer.train_from_iterator(
|
85 |
training_corpus,
|
86 |
-
vocab_size=VOCAB_SIZE,
|
87 |
min_frequency=2,
|
88 |
special_tokens=special_tokens
|
89 |
)
|
@@ -91,7 +122,7 @@ def create_tokenizer(training_corpus):
|
|
91 |
return fast_tokenizer
|
92 |
|
93 |
def load_tokenizer():
|
94 |
-
return AutoTokenizer.from_pretrained(OUTPUT_REPO + '-it' if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO)
|
95 |
|
96 |
def get_training_corpus(dataset):
|
97 |
for i in range(0, len(dataset['text']), 1000):
|
@@ -125,13 +156,13 @@ def format_prompts(examples, tokenizer, isinst):
|
|
125 |
return {'text': coded_texts}
|
126 |
|
127 |
def create_model(tokenizer):
|
128 |
-
|
129 |
vocab_size=tokenizer.vocab_size,
|
130 |
-
hidden_size=FACTOR,
|
131 |
-
intermediate_size=FACTOR * 4,
|
132 |
num_hidden_layers=12,
|
133 |
num_attention_heads=12,
|
134 |
-
max_position_embeddings=MAX_SEQ_LENGTH,
|
135 |
rms_norm_eps=1e-5,
|
136 |
initializer_range=0.02,
|
137 |
use_cache=True,
|
@@ -140,10 +171,10 @@ def create_model(tokenizer):
|
|
140 |
eos_token_id=tokenizer.eos_token_id,
|
141 |
tie_word_embeddings=False,
|
142 |
)
|
143 |
-
return LlamaForCausalLM(
|
144 |
|
145 |
def load_model():
|
146 |
-
return AutoModelForCausalLM.from_pretrained(OUTPUT_REPO + '-it' if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO)
|
147 |
|
148 |
def configure_tokenizer(tokenizer):
|
149 |
special_tokens = {
|
@@ -154,11 +185,11 @@ def configure_tokenizer(tokenizer):
|
|
154 |
"mask_token": "<mask>",
|
155 |
"additional_special_tokens": []
|
156 |
}
|
157 |
-
if INSTRUCT_FINETUNE_BOOL:
|
158 |
special_tokens["additional_special_tokens"] = ["<|user|>", "<|bot|>", "<|end|>"]
|
159 |
tokenizer.add_special_tokens(special_tokens)
|
160 |
|
161 |
-
if INSTRUCT_FINETUNE_BOOL:
|
162 |
tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
|
163 |
tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
|
164 |
|
@@ -189,25 +220,9 @@ def update_tokenizer(tokenizer, dataset, batch_size=1000):
|
|
189 |
return 0
|
190 |
|
191 |
def train_model(model, tokenizer, dataset, push, isinst):
|
192 |
-
args =
|
193 |
-
output_dir="model",
|
194 |
-
num_train_epochs=EPOCHS,
|
195 |
-
per_device_train_batch_size=BATCH_SIZE,
|
196 |
-
learning_rate=LEARNING_RATE,
|
197 |
-
optim="adamw_torch",
|
198 |
-
warmup_steps=WARMUP_STEPS,
|
199 |
-
weight_decay=WEIGHT_DECAY,
|
200 |
-
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
|
201 |
-
fp16=FP16,
|
202 |
-
save_steps=WARMUP_STEPS * 5,
|
203 |
-
logging_steps=WARMUP_STEPS,
|
204 |
-
eval_strategy="no",
|
205 |
-
report_to="no",
|
206 |
-
# eval_steps=WARMUP_STEPS,
|
207 |
-
save_total_limit=2,
|
208 |
-
)
|
209 |
|
210 |
-
optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=WEIGHT_DECAY)
|
211 |
scheduler = get_cosine_schedule_with_warmup(
|
212 |
optimizer,
|
213 |
num_warmup_steps=args.warmup_steps,
|
@@ -234,13 +249,13 @@ def train_model(model, tokenizer, dataset, push, isinst):
|
|
234 |
except RuntimeError as e:
|
235 |
print(f"Error processing test batch: {e}")
|
236 |
|
237 |
-
trainer =
|
238 |
model=model,
|
239 |
tokenizer=tokenizer,
|
240 |
args=args,
|
241 |
train_dataset=dataset,
|
242 |
# dataset_text_field='text',
|
243 |
-
max_seq_length=MAX_SEQ_LENGTH,
|
244 |
optimizers=(optimizer, scheduler)
|
245 |
)
|
246 |
|
@@ -250,7 +265,7 @@ def train_model(model, tokenizer, dataset, push, isinst):
|
|
250 |
trained_tokenizer = trainer.tokenizer
|
251 |
|
252 |
if push:
|
253 |
-
repo_id = OUTPUT_REPO + "-it" if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO
|
254 |
msg = f"Training loss: {train.training_loss:.4f}"
|
255 |
trained_model.push_to_hub(repo_id, commit_message=msg, force=True)
|
256 |
trained_tokenizer.push_to_hub(repo_id, commit_message=msg, force=True)
|
@@ -258,12 +273,12 @@ def train_model(model, tokenizer, dataset, push, isinst):
|
|
258 |
trained_model.save_pretrained("model")
|
259 |
trained_tokenizer.save_pretrained("tokenizer")
|
260 |
|
261 |
-
def main(push_to_hub=True, is_inst_finetune=
|
262 |
print("Loading Data..")
|
263 |
dataset = load_data()
|
264 |
print("Loaded data.")
|
265 |
|
266 |
-
if is_inst_finetune and INIT > 0:
|
267 |
print("Loading Tokenizer..")
|
268 |
tokenizer = load_tokenizer()
|
269 |
print("Loaded Tokenizer.")
|
@@ -285,7 +300,7 @@ def main(push_to_hub=True, is_inst_finetune=False):
|
|
285 |
configure_tokenizer(tokenizer)
|
286 |
print("Added Tokens.")
|
287 |
|
288 |
-
if is_inst_finetune or INIT > 0:
|
289 |
print("Loading Model..")
|
290 |
model = load_model()
|
291 |
print("Loaded Model.")
|
@@ -310,7 +325,7 @@ def main(push_to_hub=True, is_inst_finetune=False):
|
|
310 |
|
311 |
if __name__ == "__main__":
|
312 |
try:
|
313 |
-
main(
|
314 |
except Exception as e:
|
315 |
print(f'{type(e).__name__}: {e}')
|
316 |
Space().pause()
|
|
|
13 |
from torch.utils.data import DataLoader
|
14 |
from itertools import islice
|
15 |
|
16 |
+
class Config:
|
17 |
+
def __init__(self):
|
18 |
+
# Model and training hyperparameters
|
19 |
+
self.BATCH_SIZE = 16
|
20 |
+
self.EPOCHS = 3
|
21 |
+
self.LEARNING_RATE = 2e-4
|
22 |
+
self.MAX_SEQ_LENGTH = 512
|
23 |
+
self.VOCAB_SIZE = 32000
|
24 |
+
self.FP16 = True
|
25 |
+
self.WEIGHT_DECAY = 1e-3
|
26 |
+
self.GRADIENT_ACCUMULATION_STEPS = self.BATCH_SIZE // 4
|
27 |
+
|
28 |
+
# Dataset configurations
|
29 |
+
self.INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
|
30 |
+
self.INSTRUCT_DATASET = "nroggendorff/elephant"
|
31 |
+
self.SHARD_SIZE = int(2e+5)
|
32 |
+
|
33 |
+
# Output and repo settings
|
34 |
+
self.OUTPUT_REPO = "nroggendorff/smallama"
|
35 |
+
self.PUSH_TO_HUB = True
|
36 |
+
self.INSTRUCT_FINETUNE_BOOL = False
|
37 |
+
|
38 |
+
# Training steps and warmup
|
39 |
+
self.FACTOR = 12 ** 3 // 3
|
40 |
+
self.TOTAL_STEPS = (self.SHARD_SIZE * self.EPOCHS) // (self.BATCH_SIZE * self.GRADIENT_ACCUMULATION_STEPS)
|
41 |
+
self.WARMUP_STEPS = int(self.TOTAL_STEPS * 0.1)
|
42 |
+
|
43 |
+
# Initial state for shard offset
|
44 |
+
self.INIT = 0
|
45 |
+
|
46 |
+
# ignore
|
47 |
+
self.getConfig = lambda: self._args()
|
48 |
+
|
49 |
+
# @staticmethod
|
50 |
+
def _args(self):
|
51 |
+
return SFTConfig(
|
52 |
+
output_dir="model",
|
53 |
+
num_train_epochs=self.EPOCHS,
|
54 |
+
per_device_train_batch_size=self.BATCH_SIZE,
|
55 |
+
learning_rate=self.LEARNING_RATE,
|
56 |
+
warmup_steps=self.WARMUP_STEPS,
|
57 |
+
weight_decay=self.WEIGHT_DECAY,
|
58 |
+
gradient_accumulation_steps=self.GRADIENT_ACCUMULATION_STEPS,
|
59 |
+
fp16=self.FP16,
|
60 |
+
save_steps=int(self.WARMUP_STEPS * 5),
|
61 |
+
logging_steps=int(self.WARMUP_STEPS),
|
62 |
+
save_total_limit=2,
|
63 |
+
report_to="none",
|
64 |
+
)
|
65 |
+
|
66 |
+
config = Config()
|
67 |
|
68 |
class Space:
|
69 |
def __init__(self):
|
|
|
76 |
super().__init__(self.message)
|
77 |
|
78 |
def load_data():
|
79 |
+
if not config.INSTRUCT_FINETUNE_BOOL:
|
80 |
+
dataset = load_dataset(config.INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
|
81 |
else:
|
82 |
+
dataset = load_dataset(config.INSTRUCT_DATASET, split="train", streaming=True)
|
83 |
|
84 |
+
start = config.INIT * config.SHARD_SIZE
|
85 |
+
data_list = list(islice(dataset, start, start + config.SHARD_SIZE))
|
86 |
|
87 |
dataset = Dataset.from_dict({'text': [example['text'] for example in data_list]})
|
88 |
return dataset
|
|
|
95 |
texts,
|
96 |
padding="max_length",
|
97 |
truncation=True,
|
98 |
+
max_length=config.MAX_SEQ_LENGTH,
|
99 |
return_tensors="pt"
|
100 |
).input_ids
|
101 |
|
|
|
103 |
decoded_texts = tok.batch_decode(tokenized_texts)
|
104 |
else:
|
105 |
print('Found invalid entry in examples. Returning dummy..')
|
106 |
+
decoded_texts = [tok.pad_token * config.MAX_SEQ_LENGTH]
|
107 |
|
108 |
islist = not len(decoded_texts) == 1
|
109 |
|
|
|
114 |
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
|
115 |
tokenizer.train_from_iterator(
|
116 |
training_corpus,
|
117 |
+
vocab_size=config.VOCAB_SIZE,
|
118 |
min_frequency=2,
|
119 |
special_tokens=special_tokens
|
120 |
)
|
|
|
122 |
return fast_tokenizer
|
123 |
|
124 |
def load_tokenizer():
|
125 |
+
return AutoTokenizer.from_pretrained(config.OUTPUT_REPO + '-it' if config.INSTRUCT_FINETUNE_BOOL else config.OUTPUT_REPO)
|
126 |
|
127 |
def get_training_corpus(dataset):
|
128 |
for i in range(0, len(dataset['text']), 1000):
|
|
|
156 |
return {'text': coded_texts}
|
157 |
|
158 |
def create_model(tokenizer):
|
159 |
+
model_config = LlamaConfig(
|
160 |
vocab_size=tokenizer.vocab_size,
|
161 |
+
hidden_size=config.FACTOR,
|
162 |
+
intermediate_size=config.FACTOR * 4,
|
163 |
num_hidden_layers=12,
|
164 |
num_attention_heads=12,
|
165 |
+
max_position_embeddings=config.MAX_SEQ_LENGTH,
|
166 |
rms_norm_eps=1e-5,
|
167 |
initializer_range=0.02,
|
168 |
use_cache=True,
|
|
|
171 |
eos_token_id=tokenizer.eos_token_id,
|
172 |
tie_word_embeddings=False,
|
173 |
)
|
174 |
+
return LlamaForCausalLM(model_config)
|
175 |
|
176 |
def load_model():
|
177 |
+
return AutoModelForCausalLM.from_pretrained(config.OUTPUT_REPO + '-it' if config.INSTRUCT_FINETUNE_BOOL else config.OUTPUT_REPO)
|
178 |
|
179 |
def configure_tokenizer(tokenizer):
|
180 |
special_tokens = {
|
|
|
185 |
"mask_token": "<mask>",
|
186 |
"additional_special_tokens": []
|
187 |
}
|
188 |
+
if config.INSTRUCT_FINETUNE_BOOL:
|
189 |
special_tokens["additional_special_tokens"] = ["<|user|>", "<|bot|>", "<|end|>"]
|
190 |
tokenizer.add_special_tokens(special_tokens)
|
191 |
|
192 |
+
if config.INSTRUCT_FINETUNE_BOOL:
|
193 |
tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
|
194 |
tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
|
195 |
|
|
|
220 |
return 0
|
221 |
|
222 |
def train_model(model, tokenizer, dataset, push, isinst):
|
223 |
+
args = config.getConfig()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
+
optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=config.WEIGHT_DECAY)
|
226 |
scheduler = get_cosine_schedule_with_warmup(
|
227 |
optimizer,
|
228 |
num_warmup_steps=args.warmup_steps,
|
|
|
249 |
except RuntimeError as e:
|
250 |
print(f"Error processing test batch: {e}")
|
251 |
|
252 |
+
trainer = SFTTrainer(
|
253 |
model=model,
|
254 |
tokenizer=tokenizer,
|
255 |
args=args,
|
256 |
train_dataset=dataset,
|
257 |
# dataset_text_field='text',
|
258 |
+
max_seq_length=config.MAX_SEQ_LENGTH,
|
259 |
optimizers=(optimizer, scheduler)
|
260 |
)
|
261 |
|
|
|
265 |
trained_tokenizer = trainer.tokenizer
|
266 |
|
267 |
if push:
|
268 |
+
repo_id = config.OUTPUT_REPO + "-it" if config.INSTRUCT_FINETUNE_BOOL else config.OUTPUT_REPO
|
269 |
msg = f"Training loss: {train.training_loss:.4f}"
|
270 |
trained_model.push_to_hub(repo_id, commit_message=msg, force=True)
|
271 |
trained_tokenizer.push_to_hub(repo_id, commit_message=msg, force=True)
|
|
|
273 |
trained_model.save_pretrained("model")
|
274 |
trained_tokenizer.save_pretrained("tokenizer")
|
275 |
|
276 |
+
def main(push_to_hub=True, is_inst_finetune=config.INSTRUCT_FINETUNE_BOOL):
|
277 |
print("Loading Data..")
|
278 |
dataset = load_data()
|
279 |
print("Loaded data.")
|
280 |
|
281 |
+
if is_inst_finetune and config.INIT > 0:
|
282 |
print("Loading Tokenizer..")
|
283 |
tokenizer = load_tokenizer()
|
284 |
print("Loaded Tokenizer.")
|
|
|
300 |
configure_tokenizer(tokenizer)
|
301 |
print("Added Tokens.")
|
302 |
|
303 |
+
if is_inst_finetune or config.INIT > 0:
|
304 |
print("Loading Model..")
|
305 |
model = load_model()
|
306 |
print("Loaded Model.")
|
|
|
325 |
|
326 |
if __name__ == "__main__":
|
327 |
try:
|
328 |
+
main()
|
329 |
except Exception as e:
|
330 |
print(f'{type(e).__name__}: {e}')
|
331 |
Space().pause()
|