Spaces:
Runtime error
Runtime error
Update train.py
Browse files
train.py
CHANGED
|
@@ -5,11 +5,13 @@ from transformers import (
|
|
| 5 |
AutoTokenizer, LlamaConfig, AutoModelForCausalLM, LlamaForCausalLM,
|
| 6 |
TrainingArguments, PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
|
| 7 |
)
|
| 8 |
-
from datasets import load_dataset
|
| 9 |
from tokenizers import ByteLevelBPETokenizer
|
| 10 |
from torch.utils.data import DataLoader
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
BATCH_SIZE =
|
| 13 |
EPOCHS = 1
|
| 14 |
LEARNING_RATE = 1e-4
|
| 15 |
FACTOR = 768
|
|
@@ -19,7 +21,8 @@ INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
|
|
| 19 |
INSTRUCT_DATASET = "nroggendorff/elephant"
|
| 20 |
OUTPUT_REPO = "nroggendorff/smallama"
|
| 21 |
INSTRUCT_FINETUNE_BOOL = False
|
| 22 |
-
INIT =
|
|
|
|
| 23 |
FP16 = True
|
| 24 |
WARMUP_STEPS = 1000
|
| 25 |
WEIGHT_DECAY = 0.01
|
|
@@ -30,20 +33,12 @@ NUM_WORKERS = 4
|
|
| 30 |
def load_data():
|
| 31 |
if not INSTRUCT_FINETUNE_BOOL:
|
| 32 |
dataset = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
|
| 33 |
-
|
|
|
|
| 34 |
else:
|
| 35 |
dataset = load_dataset(INSTRUCT_DATASET, split="train")
|
| 36 |
return dataset
|
| 37 |
|
| 38 |
-
def custom_shard_stream(dataset, shard_size=5e5, shard_index=0):
|
| 39 |
-
def shard_generator():
|
| 40 |
-
count = 0
|
| 41 |
-
for example in dataset:
|
| 42 |
-
if count % shard_size == shard_index:
|
| 43 |
-
yield example
|
| 44 |
-
count += 1
|
| 45 |
-
return shard_generator()
|
| 46 |
-
|
| 47 |
def create_tokenizer(training_corpus):
|
| 48 |
tokenizer = ByteLevelBPETokenizer()
|
| 49 |
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
|
|
@@ -59,11 +54,11 @@ def create_tokenizer(training_corpus):
|
|
| 59 |
return fast_tokenizer
|
| 60 |
|
| 61 |
def load_tokenizer():
|
| 62 |
-
return AutoTokenizer.from_pretrained(OUTPUT_REPO)
|
| 63 |
|
| 64 |
def get_training_corpus(dataset):
|
| 65 |
-
for
|
| 66 |
-
yield
|
| 67 |
|
| 68 |
def format_prompts(examples, tokenizer, isinst):
|
| 69 |
texts = []
|
|
@@ -140,38 +135,44 @@ def train_model(model, tokenizer, dataset, push, isinst):
|
|
| 140 |
save_total_limit=2,
|
| 141 |
)
|
| 142 |
|
|
|
|
|
|
|
| 143 |
optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=WEIGHT_DECAY)
|
| 144 |
scheduler = get_cosine_schedule_with_warmup(
|
| 145 |
optimizer,
|
| 146 |
num_warmup_steps=args.warmup_steps,
|
| 147 |
-
num_training_steps=args.num_train_epochs
|
| 148 |
)
|
| 149 |
-
|
| 150 |
dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer, isinst), batched=True, remove_columns=dataset.column_names)
|
| 151 |
-
|
| 152 |
trainer = trl.SFTTrainer(
|
| 153 |
model=model,
|
| 154 |
tokenizer=tokenizer,
|
| 155 |
args=args,
|
| 156 |
train_dataset=dataset,
|
| 157 |
-
|
| 158 |
-
max_seq_length=MAX_SEQ_LENGTH
|
|
|
|
| 159 |
)
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
| 163 |
if push:
|
| 164 |
repo_id = OUTPUT_REPO + "-it" if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO
|
| 165 |
-
msg = f"Training loss: {
|
| 166 |
-
|
| 167 |
-
|
| 168 |
else:
|
| 169 |
-
|
| 170 |
-
|
| 171 |
|
| 172 |
def main(push_to_hub=True, is_inst_finetune=False):
|
| 173 |
dataset = load_data()
|
| 174 |
-
if not is_inst_finetune and INIT == 0:
|
| 175 |
training_corpus = get_training_corpus(dataset)
|
| 176 |
tokenizer = create_tokenizer(training_corpus)
|
| 177 |
else:
|
|
|
|
| 5 |
AutoTokenizer, LlamaConfig, AutoModelForCausalLM, LlamaForCausalLM,
|
| 6 |
TrainingArguments, PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
|
| 7 |
)
|
| 8 |
+
from datasets import load_dataset, Dataset
|
| 9 |
from tokenizers import ByteLevelBPETokenizer
|
| 10 |
from torch.utils.data import DataLoader
|
| 11 |
+
from torch.cuda.amp import autocast, GradScaler
|
| 12 |
+
from itertools import islice
|
| 13 |
|
| 14 |
+
BATCH_SIZE = 32
|
| 15 |
EPOCHS = 1
|
| 16 |
LEARNING_RATE = 1e-4
|
| 17 |
FACTOR = 768
|
|
|
|
| 21 |
INSTRUCT_DATASET = "nroggendorff/elephant"
|
| 22 |
OUTPUT_REPO = "nroggendorff/smallama"
|
| 23 |
INSTRUCT_FINETUNE_BOOL = False
|
| 24 |
+
INIT = 1#/16
|
| 25 |
+
SHARD_SIZE = int(5e+5)
|
| 26 |
FP16 = True
|
| 27 |
WARMUP_STEPS = 1000
|
| 28 |
WEIGHT_DECAY = 0.01
|
|
|
|
| 33 |
def load_data():
|
| 34 |
if not INSTRUCT_FINETUNE_BOOL:
|
| 35 |
dataset = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
|
| 36 |
+
start = INIT * SHARD_SIZE
|
| 37 |
+
dataset = Dataset.from_dict({'text': [example['text'] for example in islice(dataset, start, start + SHARD_SIZE)]})
|
| 38 |
else:
|
| 39 |
dataset = load_dataset(INSTRUCT_DATASET, split="train")
|
| 40 |
return dataset
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
def create_tokenizer(training_corpus):
|
| 43 |
tokenizer = ByteLevelBPETokenizer()
|
| 44 |
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
|
|
|
|
| 54 |
return fast_tokenizer
|
| 55 |
|
| 56 |
def load_tokenizer():
|
| 57 |
+
return AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B")#OUTPUT_REPO)
|
| 58 |
|
| 59 |
def get_training_corpus(dataset):
|
| 60 |
+
for i in range(0, len(dataset['text']), 1000):
|
| 61 |
+
yield dataset['text'][i : i + 1000]
|
| 62 |
|
| 63 |
def format_prompts(examples, tokenizer, isinst):
|
| 64 |
texts = []
|
|
|
|
| 135 |
save_total_limit=2,
|
| 136 |
)
|
| 137 |
|
| 138 |
+
dataset = dataset.shard(num_shards=len(dataset) // SHARD_SIZE, index=INIT)
|
| 139 |
+
|
| 140 |
optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=WEIGHT_DECAY)
|
| 141 |
scheduler = get_cosine_schedule_with_warmup(
|
| 142 |
optimizer,
|
| 143 |
num_warmup_steps=args.warmup_steps,
|
| 144 |
+
num_training_steps=(len(dataset) // args.per_device_train_batch_size) * args.num_train_epochs
|
| 145 |
)
|
| 146 |
+
|
| 147 |
dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer, isinst), batched=True, remove_columns=dataset.column_names)
|
| 148 |
+
|
| 149 |
trainer = trl.SFTTrainer(
|
| 150 |
model=model,
|
| 151 |
tokenizer=tokenizer,
|
| 152 |
args=args,
|
| 153 |
train_dataset=dataset,
|
| 154 |
+
dataset_text_field='text',
|
| 155 |
+
max_seq_length=MAX_SEQ_LENGTH,
|
| 156 |
+
optimizers=(optimizer, scheduler)
|
| 157 |
)
|
| 158 |
+
|
| 159 |
+
train = trainer.train()
|
| 160 |
+
|
| 161 |
+
trained_model = trainer.model
|
| 162 |
+
trained_tokenizer = trainer.tokenizer
|
| 163 |
+
|
| 164 |
if push:
|
| 165 |
repo_id = OUTPUT_REPO + "-it" if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO
|
| 166 |
+
msg = f"Training loss: {train.training_loss:.4f}"
|
| 167 |
+
trained_model.push_to_hub(repo_id, commit_message=msg, force=True)
|
| 168 |
+
trained_tokenizer.push_to_hub(repo_id, commit_message=msg, force=True)
|
| 169 |
else:
|
| 170 |
+
trained_model.save_pretrained("model")
|
| 171 |
+
trained_tokenizer.save_pretrained("tokenizer")
|
| 172 |
|
| 173 |
def main(push_to_hub=True, is_inst_finetune=False):
|
| 174 |
dataset = load_data()
|
| 175 |
+
if not is_inst_finetune and INIT == 0 and False:
|
| 176 |
training_corpus = get_training_corpus(dataset)
|
| 177 |
tokenizer = create_tokenizer(training_corpus)
|
| 178 |
else:
|