Spaces:
Runtime error
Runtime error
Update train.py
Browse files
train.py
CHANGED
@@ -5,11 +5,13 @@ from transformers import (
|
|
5 |
AutoTokenizer, LlamaConfig, AutoModelForCausalLM, LlamaForCausalLM,
|
6 |
TrainingArguments, PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
|
7 |
)
|
8 |
-
from datasets import load_dataset
|
9 |
from tokenizers import ByteLevelBPETokenizer
|
10 |
from torch.utils.data import DataLoader
|
|
|
|
|
11 |
|
12 |
-
BATCH_SIZE =
|
13 |
EPOCHS = 1
|
14 |
LEARNING_RATE = 1e-4
|
15 |
FACTOR = 768
|
@@ -19,7 +21,8 @@ INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
|
|
19 |
INSTRUCT_DATASET = "nroggendorff/elephant"
|
20 |
OUTPUT_REPO = "nroggendorff/smallama"
|
21 |
INSTRUCT_FINETUNE_BOOL = False
|
22 |
-
INIT =
|
|
|
23 |
FP16 = True
|
24 |
WARMUP_STEPS = 1000
|
25 |
WEIGHT_DECAY = 0.01
|
@@ -30,20 +33,12 @@ NUM_WORKERS = 4
|
|
30 |
def load_data():
|
31 |
if not INSTRUCT_FINETUNE_BOOL:
|
32 |
dataset = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
|
33 |
-
|
|
|
34 |
else:
|
35 |
dataset = load_dataset(INSTRUCT_DATASET, split="train")
|
36 |
return dataset
|
37 |
|
38 |
-
def custom_shard_stream(dataset, shard_size=5e5, shard_index=0):
|
39 |
-
def shard_generator():
|
40 |
-
count = 0
|
41 |
-
for example in dataset:
|
42 |
-
if count % shard_size == shard_index:
|
43 |
-
yield example
|
44 |
-
count += 1
|
45 |
-
return shard_generator()
|
46 |
-
|
47 |
def create_tokenizer(training_corpus):
|
48 |
tokenizer = ByteLevelBPETokenizer()
|
49 |
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
|
@@ -59,11 +54,11 @@ def create_tokenizer(training_corpus):
|
|
59 |
return fast_tokenizer
|
60 |
|
61 |
def load_tokenizer():
|
62 |
-
return AutoTokenizer.from_pretrained(OUTPUT_REPO)
|
63 |
|
64 |
def get_training_corpus(dataset):
|
65 |
-
for
|
66 |
-
yield
|
67 |
|
68 |
def format_prompts(examples, tokenizer, isinst):
|
69 |
texts = []
|
@@ -140,38 +135,44 @@ def train_model(model, tokenizer, dataset, push, isinst):
|
|
140 |
save_total_limit=2,
|
141 |
)
|
142 |
|
|
|
|
|
143 |
optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=WEIGHT_DECAY)
|
144 |
scheduler = get_cosine_schedule_with_warmup(
|
145 |
optimizer,
|
146 |
num_warmup_steps=args.warmup_steps,
|
147 |
-
num_training_steps=args.num_train_epochs
|
148 |
)
|
149 |
-
|
150 |
dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer, isinst), batched=True, remove_columns=dataset.column_names)
|
151 |
-
|
152 |
trainer = trl.SFTTrainer(
|
153 |
model=model,
|
154 |
tokenizer=tokenizer,
|
155 |
args=args,
|
156 |
train_dataset=dataset,
|
157 |
-
|
158 |
-
max_seq_length=MAX_SEQ_LENGTH
|
|
|
159 |
)
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
163 |
if push:
|
164 |
repo_id = OUTPUT_REPO + "-it" if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO
|
165 |
-
msg = f"Training loss: {
|
166 |
-
|
167 |
-
|
168 |
else:
|
169 |
-
|
170 |
-
|
171 |
|
172 |
def main(push_to_hub=True, is_inst_finetune=False):
|
173 |
dataset = load_data()
|
174 |
-
if not is_inst_finetune and INIT == 0:
|
175 |
training_corpus = get_training_corpus(dataset)
|
176 |
tokenizer = create_tokenizer(training_corpus)
|
177 |
else:
|
|
|
5 |
AutoTokenizer, LlamaConfig, AutoModelForCausalLM, LlamaForCausalLM,
|
6 |
TrainingArguments, PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
|
7 |
)
|
8 |
+
from datasets import load_dataset, Dataset
|
9 |
from tokenizers import ByteLevelBPETokenizer
|
10 |
from torch.utils.data import DataLoader
|
11 |
+
from torch.cuda.amp import autocast, GradScaler
|
12 |
+
from itertools import islice
|
13 |
|
14 |
+
BATCH_SIZE = 32
|
15 |
EPOCHS = 1
|
16 |
LEARNING_RATE = 1e-4
|
17 |
FACTOR = 768
|
|
|
21 |
INSTRUCT_DATASET = "nroggendorff/elephant"
|
22 |
OUTPUT_REPO = "nroggendorff/smallama"
|
23 |
INSTRUCT_FINETUNE_BOOL = False
|
24 |
+
INIT = 1#/16
|
25 |
+
SHARD_SIZE = int(5e+5)
|
26 |
FP16 = True
|
27 |
WARMUP_STEPS = 1000
|
28 |
WEIGHT_DECAY = 0.01
|
|
|
33 |
def load_data():
|
34 |
if not INSTRUCT_FINETUNE_BOOL:
|
35 |
dataset = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
|
36 |
+
start = INIT * SHARD_SIZE
|
37 |
+
dataset = Dataset.from_dict({'text': [example['text'] for example in islice(dataset, start, start + SHARD_SIZE)]})
|
38 |
else:
|
39 |
dataset = load_dataset(INSTRUCT_DATASET, split="train")
|
40 |
return dataset
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def create_tokenizer(training_corpus):
|
43 |
tokenizer = ByteLevelBPETokenizer()
|
44 |
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
|
|
|
54 |
return fast_tokenizer
|
55 |
|
56 |
def load_tokenizer():
|
57 |
+
return AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B")#OUTPUT_REPO)
|
58 |
|
59 |
def get_training_corpus(dataset):
|
60 |
+
for i in range(0, len(dataset['text']), 1000):
|
61 |
+
yield dataset['text'][i : i + 1000]
|
62 |
|
63 |
def format_prompts(examples, tokenizer, isinst):
|
64 |
texts = []
|
|
|
135 |
save_total_limit=2,
|
136 |
)
|
137 |
|
138 |
+
dataset = dataset.shard(num_shards=len(dataset) // SHARD_SIZE, index=INIT)
|
139 |
+
|
140 |
optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=WEIGHT_DECAY)
|
141 |
scheduler = get_cosine_schedule_with_warmup(
|
142 |
optimizer,
|
143 |
num_warmup_steps=args.warmup_steps,
|
144 |
+
num_training_steps=(len(dataset) // args.per_device_train_batch_size) * args.num_train_epochs
|
145 |
)
|
146 |
+
|
147 |
dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer, isinst), batched=True, remove_columns=dataset.column_names)
|
148 |
+
|
149 |
trainer = trl.SFTTrainer(
|
150 |
model=model,
|
151 |
tokenizer=tokenizer,
|
152 |
args=args,
|
153 |
train_dataset=dataset,
|
154 |
+
dataset_text_field='text',
|
155 |
+
max_seq_length=MAX_SEQ_LENGTH,
|
156 |
+
optimizers=(optimizer, scheduler)
|
157 |
)
|
158 |
+
|
159 |
+
train = trainer.train()
|
160 |
+
|
161 |
+
trained_model = trainer.model
|
162 |
+
trained_tokenizer = trainer.tokenizer
|
163 |
+
|
164 |
if push:
|
165 |
repo_id = OUTPUT_REPO + "-it" if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO
|
166 |
+
msg = f"Training loss: {train.training_loss:.4f}"
|
167 |
+
trained_model.push_to_hub(repo_id, commit_message=msg, force=True)
|
168 |
+
trained_tokenizer.push_to_hub(repo_id, commit_message=msg, force=True)
|
169 |
else:
|
170 |
+
trained_model.save_pretrained("model")
|
171 |
+
trained_tokenizer.save_pretrained("tokenizer")
|
172 |
|
173 |
def main(push_to_hub=True, is_inst_finetune=False):
|
174 |
dataset = load_data()
|
175 |
+
if not is_inst_finetune and INIT == 0 and False:
|
176 |
training_corpus = get_training_corpus(dataset)
|
177 |
tokenizer = create_tokenizer(training_corpus)
|
178 |
else:
|