Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,854 Bytes
ce90309 47fc4a0 ce90309 47fc4a0 f4ff30a 168a7c1 825e87d 47fc4a0 f4ff30a 4474e7a fb0307e 4474e7a fb0307e 4474e7a badae07 fb0307e 4474e7a fb0307e 4474e7a fb0307e badae07 fb0307e badae07 4474e7a fb0307e 4474e7a fb0307e 4474e7a fb0307e 4474e7a fb0307e 4474e7a fb0307e badae07 4474e7a f4ff30a fb0307e f4ff30a 168a7c1 f4ff30a 168a7c1 f4ff30a 825e87d fb0307e 4474e7a fb0307e f4ff30a 825e87d fb0307e f4ff30a 4474e7a fb0307e 4474e7a ce90309 fb0307e f4ff30a fb0307e 47fc4a0 fb0307e 47fc4a0 2491cbe fb0307e 825e87d 47fc4a0 2491cbe badae07 fb0307e badae07 fb0307e f4ff30a 47fc4a0 f4ff30a fb0307e 47fc4a0 fb0307e 2491cbe fb0307e 47fc4a0 4474e7a fb0307e 4474e7a fb0307e 4474e7a fb0307e 4474e7a f4ff30a fb0307e f4ff30a fb0307e f4ff30a fb0307e badae07 825e87d fb0307e f4ff30a fb0307e 2491cbe badae07 f4ff30a 825e87d f4ff30a fb0307e 825e87d badae07 825e87d fb0307e f4ff30a fb0307e f4ff30a badae07 2491cbe 4474e7a 2491cbe f4ff30a 4474e7a fb0307e 1321d2f badae07 fb0307e 2491cbe 4474e7a badae07 4474e7a fb0307e badae07 fb0307e 4474e7a fb0307e 4474e7a fb0307e 4474e7a fb0307e 4474e7a badae07 4474e7a 1321d2f fb0307e 4474e7a fb0307e 4474e7a 1321d2f badae07 4474e7a fb0307e 4474e7a fb0307e 4474e7a badae07 4474e7a fb0307e 4474e7a fb0307e 4474e7a 1321d2f 2491cbe fb0307e 2491cbe badae07 fb0307e badae07 2491cbe 1321d2f badae07 1321d2f badae07 d07e660 2491cbe d07e660 fb0307e badae07 fb0307e badae07 fb0307e 4474e7a 1321d2f 4474e7a fb0307e 4474e7a badae07 4474e7a badae07 4474e7a 1321d2f fb0307e 1321d2f fb0307e 1321d2f 2491cbe badae07 fb0307e 4474e7a fb0307e 4474e7a fb0307e 4474e7a fb0307e 825e87d f4ff30a 9b91020 4474e7a 825e87d f4ff30a badae07 f4ff30a 825e87d ce90309 fb0307e 2491cbe fb0307e 4474e7a fb0307e f4ff30a fb0307e 4474e7a 47fc4a0 4474e7a 1321d2f 4474e7a fb0307e 4474e7a f4ff30a 2491cbe 47fc4a0 f4ff30a 47fc4a0 168a7c1 ce90309 168a7c1 fb0307e 168a7c1 47fc4a0 fb0307e 47fc4a0 825e87d f4ff30a 4474e7a fb0307e f4ff30a ce90309 47fc4a0 fb0307e 47fc4a0 f4ff30a 47fc4a0 f4ff30a fb0307e 47fc4a0 fb0307e 4474e7a fb0307e 47fc4a0 ce90309 fb0307e badae07 3c422aa badae07 2491cbe 47fc4a0 fb0307e ce90309 47fc4a0 fb0307e 2491cbe fb0307e f4ff30a fb0307e 2491cbe f4ff30a fb0307e 5807c79 fb0307e 5807c79 fb0307e 2491cbe 5807c79 fb0307e 5807c79 fb0307e 3c422aa 5807c79 fb0307e 5807c79 3c422aa fb0307e 3c422aa 5807c79 fb0307e 47fc4a0 fb0307e 47fc4a0 fb0307e 825e87d 47fc4a0 fb0307e f4ff30a 47fc4a0 ce90309 fb0307e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
# dream_app.py
import torch
import numpy as np
import gradio as gr
import spaces # Ensure spaces is installed if needed for GPU decorator
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, AutoConfig
import time
import re
from typing import List, Dict, Tuple, Optional
import torch.distributions as dists # Added import
# --- START: Copied Helper functions from generation_utils.py ---
# [Keep the copied functions: top_p_logits, top_k_logits, sample_tokens]
def top_p_logits(logits, top_p=None):
""" Applies top-p filtering to logits. """
if top_p is None or top_p >= 1.0:
return logits
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
return logits
def top_k_logits(logits, top_k=None):
""" Applies top-k filtering to logits. """
if top_k is None or top_k <= 0:
return logits
top_k = min(top_k, logits.size(-1))
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
return logits
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
""" Samples tokens based on logits and calculates confidence. """
if temperature > 0:
safe_temp = max(temperature, 1e-6)
logits = logits / safe_temp
if top_p is not None and 0.0 < top_p < 1.0:
logits = top_p_logits(logits, top_p)
if top_k is not None and top_k > 0:
logits = top_k_logits(logits, top_k)
is_all_neg_inf = torch.all(logits == torch.finfo(logits.dtype).min, dim=-1, keepdim=True)
if torch.any(is_all_neg_inf):
uniform_logits = torch.zeros_like(logits)
logits = torch.where(is_all_neg_inf, uniform_logits, logits)
probs = torch.softmax(logits, dim=-1)
probs = torch.clamp(probs, min=0.0)
probs = probs / probs.sum(dim=-1, keepdim=True)
probs = torch.nan_to_num(probs, nan=0.0)
if temperature > 0:
try:
x0 = dists.Categorical(probs=probs).sample()
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
except Exception as e:
print(f"Warning: Error during Categorical sampling: {e}. Falling back to argmax.")
confidence, x0 = probs.max(dim=-1)
else:
confidence, x0 = probs.max(dim=-1)
if margin_confidence:
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
top1_probs = sorted_probs[..., 0]
top2_probs = sorted_probs[..., 1] if sorted_probs.shape[-1] > 1 else top1_probs
confidence = top1_probs - top2_probs
if neg_entropy:
epsilon = 1e-10
log_probs = torch.log(probs + epsilon)
confidence = torch.sum(probs * log_probs, dim=-1)
confidence = torch.nan_to_num(confidence, nan=0.0)
return confidence, x0
# --- END: Copied Helper functions ---
# [Keep model loading, constants]
config = AutoConfig.from_pretrained("Dream-org/Dream-v0-Instruct-7B", trust_remote_code=True)
model_path = "Dream-org/Dream-v0-Instruct-7B"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
print("Loading model...")
model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32,
trust_remote_code=True,
attn_implementation="sdpa"
)
model = model.to(device).eval()
print("Model loaded.")
MASK_TOKEN = tokenizer.mask_token
MASK_ID = tokenizer.mask_token_id
PAD_ID = tokenizer.pad_token_id
EOS_ID = tokenizer.eos_token_id
if MASK_ID is None: raise ValueError("Cannot determine MASK_ID.")
SPECIAL_TOKEN_IDS = {PAD_ID, EOS_ID, MASK_ID}
try:
IM_START_ID = tokenizer.convert_tokens_to_ids("<|im_start|>")
IM_END_ID = tokenizer.convert_tokens_to_ids("<|im_end|>")
SPECIAL_TOKEN_IDS.add(IM_START_ID)
SPECIAL_TOKEN_IDS.add(IM_END_ID)
except KeyError: IM_START_ID, IM_END_ID = None, None
# --- Helper Functions ---
def parse_constraints(constraints_text: str) -> Dict[int, List[int]]:
""" Parses word constraints. """
constraints = {}
if not constraints_text: return constraints
parts = constraints_text.split(',')
for part in parts:
part = part.strip()
if ':' not in part: continue
pos_str, word = part.split(':', 1)
try:
pos = int(pos_str.strip())
word = word.strip()
token_ids = []
if word:
text_to_encode = (" " + word) if (pos > 0 and not word.startswith(" ")) else word
token_ids = tokenizer.encode(text_to_encode, add_special_tokens=False)
if token_ids and pos >= 0: constraints[pos] = token_ids
elif not token_ids and word: print(f"Warning: Could not tokenize constraint word '{word}'")
except ValueError: print(f"Warning: Invalid position '{pos_str}' in constraint part '{part}'")
except Exception as e: print(f"Warning: Error processing constraint '{part}': {e}")
return constraints
def format_chat_history(history: List[List[Optional[str]]]) -> List[Dict[str, str]]:
"""
Formats chat history [[user, bot], [user, bot]] into [{'role': 'user', 'content': ...}, ...]
for the tokenizer's chat template.
"""
messages = []
# Ensure history is not empty and is properly structured
if not history:
return messages
for turn in history:
if not isinstance(turn, (list, tuple)) or len(turn) != 2:
print(f"Warning: Skipping malformed history turn: {turn}")
continue
user_msg, assistant_msg = turn
if user_msg is not None: # Check if user message exists
# Ensure content is a string
user_content = str(user_msg) if user_msg is not None else ""
messages.append({"role": "user", "content": user_content})
# Add assistant message only if it exists and is not None
if assistant_msg is not None:
assistant_content = str(assistant_msg) if assistant_msg is not None else ""
messages.append({"role": "assistant", "content": assistant_content})
# print(f"Formatted messages for template: {messages}") # Debug
return messages
def apply_constraints_to_state(
x: torch.Tensor, prompt_length: int, total_length: int,
parsed_constraints: Dict[int, List[int]], current_step: Optional[int] = None
) -> torch.Tensor:
""" Applies constraints to the state tensor `x`. """
modified_x = x.clone()
for rel_pos, word_token_ids in parsed_constraints.items():
abs_start_pos = prompt_length + rel_pos
abs_end_pos = abs_start_pos + len(word_token_ids)
if abs_start_pos < total_length and abs_end_pos <= total_length:
try:
constraint_tensor = torch.tensor(word_token_ids, dtype=torch.long, device=modified_x.device)
modified_x[0, abs_start_pos:abs_end_pos] = constraint_tensor
except IndexError: print(f"Warning (Step {current_step}): Constraint OOB: {rel_pos}")
except Exception as e: print(f"Warning (Step {current_step}): Constraint failed {rel_pos}: {e}")
return modified_x
# --- Core Generation Logic with Live Visualization ---
@spaces.GPU
@torch.no_grad()
def generate_dream_response(
history: List[List[Optional[str]]], # IMPORTANT: This is the *full* history from the state
gen_length: int,
steps: int,
constraints_text: str,
temperature: float,
top_p: Optional[float],
top_k: Optional[int],
alg: str,
alg_temp: Optional[float],
visualization_delay: float
): # No return type annotation for generators in older Python? Or use -> Iterator[Tuple[...]]
""" Generates text step-by-step and yields visualization states live. """
# Ensure history is valid before proceeding
if not history or not history[-1] or history[-1][0] is None:
# Yield the current (potentially empty) history back
yield history, [("No valid input message found.", "red")], ""
return
# --- 1. Preparation ---
# Use the *entire* history received from the state for context
messages_for_template = format_chat_history(history)
parsed_constraints = parse_constraints(constraints_text)
try:
inputs = tokenizer.apply_chat_template(
messages_for_template,
return_tensors="pt",
return_dict=True,
add_generation_prompt=True # This adds the assistant prompt turn
)
input_ids = inputs.input_ids.to(device)
prompt_attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else torch.ones_like(input_ids)
prompt_length = input_ids.shape[1]
# print(f"Prompt length for model: {prompt_length}") # Debug
# print(f"Input IDs to model (first 50): {input_ids[0, :50].tolist()}") # Debug
except Exception as e:
print(f"Error applying chat template: {e}")
# Yield the current history back with an error message
yield history, [("Error preparing input.", "red")], ""
return
eps = 1e-3
top_p_val = top_p if top_p is not None and 0.0 < top_p < 1.0 else None
top_k_val = top_k if top_k is not None and top_k > 0 else None
alg_temp_val = alg_temp if alg in ['maskgit_plus', 'topk_margin', 'entropy'] and alg_temp is not None and alg_temp > 0 else None
# --- 2. Initialize Generation State ---
total_length = prompt_length + gen_length
initial_generation_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
x = torch.cat((input_ids, initial_generation_part), dim=1)
# --- Prepare Attention Mask ---
generation_attention_mask = torch.ones((1, gen_length), dtype=torch.long, device=device)
full_attention_mask_long = torch.cat((prompt_attention_mask, generation_attention_mask), dim=1)
attention_mask_for_model = full_attention_mask_long.to(model.dtype)
large_neg_val = torch.finfo(model.dtype).min
attention_mask_for_model = (1.0 - attention_mask_for_model) * large_neg_val
attention_mask_for_model = attention_mask_for_model.unsqueeze(1).unsqueeze(2) # Shape [B, 1, 1, N]
timesteps = torch.linspace(1, eps, steps + 1, device=device)
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=-1)
# --- 3. Visualization & State Setup ---
previous_tokens_vis = None
# Use the passed-in history directly. We will modify the *last* item's assistant response.
# No need for history_copy if we are careful. Let's try modifying `history` directly.
# IMPORTANT: Gradio state needs the component to receive the *entire object* back if it's mutated.
# So yielding the modified `history` list itself should work.
history_for_yield = history # Reference the original list
# --- 4. Initial Yield (Masked State) ---
initial_generated_tokens = x[0, prompt_length:].cpu()
vis_data_initial = []
for tok_id in initial_generated_tokens.tolist():
vis_data_initial.append((MASK_TOKEN, "#444444"))
previous_tokens_vis = initial_generated_tokens
# Yield the *current* history (with None for last bot msg)
yield history_for_yield, vis_data_initial, ""
time.sleep(visualization_delay)
# --- 5. Step-by-Step Diffusion Loop ---
try:
start_time = time.time()
current_response_text = "" # Store intermediate text
for i in range(steps):
mask_index = (x == MASK_ID)
if not mask_index.any():
print(f"No mask tokens left at step {i}. Stopping early.")
break
outputs = model(
input_ids=x,
attention_mask=attention_mask_for_model,
position_ids=None, use_cache=False, return_dict=True
)
logits = outputs.logits
logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1)
mask_logits = logits[mask_index]
if mask_logits.numel() == 0:
print(f"No masked tokens found for logit selection at step {i}. Stopping.")
break
t = timesteps[i]; s = timesteps[i + 1]
x_new_masked_part = torch.full_like(x[mask_index], MASK_ID, device=device, dtype=torch.long)
# [Sampling logic remains the same as previous working version]
if alg == 'origin':
p_transfer = (1.0 - s / t) if i < steps - 1 else 1.0
num_masked = mask_logits.shape[0]
transfer_indices_relative = torch.rand(num_masked, device=device) < p_transfer
logits_to_sample = mask_logits[transfer_indices_relative]
if logits_to_sample.numel() > 0:
_, sampled_tokens = sample_tokens(logits_to_sample, temperature=temperature, top_p=top_p_val, top_k=top_k_val)
x_new_masked_part[transfer_indices_relative] = sampled_tokens
else: # Confidence-based
use_margin = (alg == 'topk_margin'); use_entropy = (alg == 'entropy')
confidence, x0_candidates = sample_tokens(
mask_logits, temperature=temperature, top_p=top_p_val, top_k=top_k_val,
margin_confidence=use_margin, neg_entropy=use_entropy
)
num_mask_token = mask_logits.shape[0]
target_num_revealed_float = num_mask_token * (1.0 - s / t)
number_transfer_tokens = int(target_num_revealed_float) if i < steps - 1 else num_mask_token
if number_transfer_tokens > 0:
num_samples = min(number_transfer_tokens, num_mask_token)
if num_samples > 0:
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device) # Init empty
if alg_temp_val is None or alg_temp_val <= 0: # Top-k
sort_metric = confidence if alg != 'entropy' else -confidence
k_topk = min(num_samples, sort_metric.numel())
if k_topk > 0: _, transfer_indices_relative = torch.topk(sort_metric, k=k_topk)
else: # Sampled
if confidence.numel() > 0:
conf_probs = confidence / alg_temp_val
conf_probs = torch.nan_to_num(conf_probs, nan=0.0, posinf=1e9, neginf=-1e9)
conf_probs = torch.clamp(conf_probs - conf_probs.max(), min=-30)
conf_probs = F.softmax(conf_probs, dim=-1)
conf_probs = torch.clamp(conf_probs, min=0.0)
conf_probs = torch.nan_to_num(conf_probs, nan=0.0)
prob_sum = conf_probs.sum()
target_sum_tensor = torch.tensor(1.0, device=device, dtype=prob_sum.dtype)
if not torch.isclose(prob_sum, target_sum_tensor, atol=1e-4) and prob_sum > 0:
safe_prob_sum = torch.max(prob_sum, torch.tensor(1e-12, device=device, dtype=prob_sum.dtype))
conf_probs = conf_probs / safe_prob_sum
final_prob_sum_check = conf_probs.sum()
if conf_probs.numel() > 0 and num_samples > 0 and torch.all(conf_probs >= 0) and torch.isclose(final_prob_sum_check, target_sum_tensor, atol=1e-4):
try: transfer_indices_relative = torch.multinomial(conf_probs, num_samples=num_samples, replacement=False)
except RuntimeError as e: print(f"W{i}: Multinomial failed ('{e}'). Fallback.") # Fallback handled below
if transfer_indices_relative.numel() == 0: # Fallback if sampling failed or wasn't possible
sort_metric = confidence if alg != 'entropy' else -confidence
k_fallback = min(num_samples, sort_metric.numel())
if k_fallback > 0: _, transfer_indices_relative = torch.topk(sort_metric, k=k_fallback)
# Apply transfer
if transfer_indices_relative.numel() > 0:
valid_indices = transfer_indices_relative < x0_candidates.shape[0]
valid_transfer_indices = transfer_indices_relative[valid_indices]
if valid_transfer_indices.numel() > 0 and valid_transfer_indices.max() < x_new_masked_part.shape[0]:
x_new_masked_part[valid_transfer_indices] = x0_candidates[valid_transfer_indices].clone()
x[mask_index] = x_new_masked_part
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=i)
# --- Yield Visualization ---
current_generated_tokens = x[0, prompt_length:].cpu()
vis_data = []
# [Visualization formatting logic remains the same]
for j in range(gen_length):
current_tok_id = current_generated_tokens[j].item()
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
try:
decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False)
display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
except Exception: display_token = f"[ID:{current_tok_id}]"
color = None; token_to_display = display_token
if current_tok_id == MASK_ID: color = "#444444"
elif previous_tok_id == MASK_ID: color = "#66CC66"
else: color = "#6699CC"
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or (EOS_ID is not None and current_tok_id == EOS_ID)
if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None
if token_to_display: vis_data.append((token_to_display, color))
# ---
previous_tokens_vis = current_generated_tokens
# --- Update intermediate response text ---
intermediate_response_tokens = x[0, prompt_length:]
current_response_text = tokenizer.decode(
intermediate_response_tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=True
).strip()
# --- Update history for yield ---
# Update the placeholder in the *last turn* of the history list
if history_for_yield and history_for_yield[-1]:
history_for_yield[-1][1] = current_response_text + "..." # Indicate streaming
# --- Yield current state ---
yield history_for_yield, vis_data, current_response_text
time.sleep(visualization_delay)
# --- End loop iteration ---
end_time = time.time()
print(f"Dream generation finished in {end_time - start_time:.2f} seconds.")
# --- 6. Final Processing & Yield ---
final_sequence = x[0]
response_tokens = final_sequence[prompt_length:]
final_response_text = tokenizer.decode(
response_tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=True
).strip()
# Update the history definitively with the final text
if history_for_yield and history_for_yield[-1]:
history_for_yield[-1][1] = final_response_text
# Format final visualization
final_generated_tokens = x[0, prompt_length:].cpu()
vis_data_final = []
# [Final visualization formatting logic remains the same]
for j in range(gen_length):
current_tok_id = final_generated_tokens[j].item()
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
try:
decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False)
display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
except Exception: display_token = f"[ID:{current_tok_id}]"
color = None; token_to_display = display_token
if current_tok_id == MASK_ID: color = "#444444"
elif previous_tok_id == MASK_ID: color = "#66CC66"
else: color = "#6699CC"
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or (EOS_ID is not None and current_tok_id == EOS_ID)
if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None
if token_to_display: vis_data_final.append((token_to_display, color))
# ---
# Yield the final state
yield history_for_yield, vis_data_final, final_response_text
print("Visualization streaming complete.")
except Exception as e:
print(f"Error during generation or processing: {e}")
import traceback
traceback.print_exc()
# Ensure the history state reflects the error somehow? Or just yield error vis.
# Yield the history *as it was* when the error occurred.
if history_for_yield and history_for_yield[-1]:
history_for_yield[-1][1] = f"<Error: {e}>" # Put error in bot response
yield history_for_yield, [("Error during generation.", "red")], ""
return
# --- Gradio UI ---
css = '''
.category-legend{display:none}
button{min-height: 60px}
'''
def create_chatbot_demo():
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
gr.Markdown(
"[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] "
"[[Blog](https://hkunlp.github.io/blog/2025/dream/)]"
)
# Use a single state variable for the history list
chat_history_state = gr.State([])
with gr.Row():
with gr.Column(scale=3):
chatbot_ui = gr.Chatbot(
label="Conversation",
height=500,
show_copy_button=True,
bubble_full_width=False,
# value=[] # Initial value set by state binding later
)
with gr.Group():
with gr.Row():
user_input = gr.Textbox(
label="Your Message", placeholder="Type your message here...",
scale=7, autofocus=True, show_label=False, container=False
)
send_btn = gr.Button("Send", scale=1, variant="primary")
constraints_input = gr.Textbox(
label="Word Constraints (Optional)",
info="Format: 'pos:word, pos:word,...'. Example: '0:Once, 5:upon, 10:time'",
placeholder="0:Hello, 10:world", value=""
)
with gr.Column(scale=2):
output_vis = gr.HighlightedText(
label="Denoising Process Visualization", combine_adjacent=True,
show_legend=False, interactive=False
)
response_text_display = gr.Textbox(
label="Generated Response (Live)", interactive=False, lines=5
)
with gr.Accordion("Generation Settings", open=False):
# [Settings sliders remain the same]
with gr.Row():
gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens")
steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps")
with gr.Row():
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.05, label="Temperature (0 = greedy)")
alg_temp = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Remasking Temp (Confidence Algs)")
with gr.Row():
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-P (0 disables)")
top_k = gr.Slider(minimum=0, maximum=200, value=0, step=5, label="Top-K (0 disables)")
with gr.Row():
remasking_strategy = gr.Radio(choices=['origin', 'maskgit_plus', 'topk_margin', 'entropy'], value='entropy', label="Remasking Strategy (Algorithm)")
with gr.Row():
visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.03, step=0.01, label="Visualization Delay (seconds)")
clear_btn = gr.Button("Clear Conversation")
# --- Event Handler Functions ---
def add_user_message(message: str, history: List[List[Optional[str]]]):
"""
Adds the user message to the history state and prepares the UI
for the bot's response (clearing previous outputs).
"""
if not message.strip():
gr.Warning("Please enter a message.")
# Return unchanged history and empty outputs
return history, history, "", [], ""
# Append new turn with user message and None placeholder for bot response
history.append([message, None])
# Return updated history (for state), history (for immediate UI update),
# empty input, empty vis, empty response text.
return history, history, "", [], ""
def clear_all():
"""Clears state and all relevant UI components."""
return [], [], "", [], "" # state, chatbot, input, vis, response text
# --- Connect UI elements ---
# Define inputs/outputs for the generator
generation_inputs = [
chat_history_state, gen_length, steps, constraints_input,
temperature, top_p, top_k, remasking_strategy, alg_temp,
visualization_delay
]
# Generator yields: history_list, vis_data, response_text
generation_outputs = [chatbot_ui, output_vis, response_text_display]
# Chain the actions: Submit/Click -> add_user_message -> generate_dream_response
# 1. User submits message (Enter or Button)
user_interaction = [user_input, chat_history_state]
outputs_after_user_add = [
chat_history_state, # Update the state
chatbot_ui, # Update chatbot UI immediately
user_input, # Clear user input box
output_vis, # Clear visualization
response_text_display # Clear response text box
]
submit_listener = user_input.submit(
fn=add_user_message,
inputs=user_interaction,
outputs=outputs_after_user_add
).then( # 2. Trigger generation AFTER user message is added and UI cleared
fn=generate_dream_response,
inputs=generation_inputs, # Pass the updated state and parameters
outputs=generation_outputs, # Stream updates to chatbot, vis, text
show_progress="hidden"
)
click_listener = send_btn.click(
fn=add_user_message,
inputs=user_interaction,
outputs=outputs_after_user_add
).then( # 2. Trigger generation AFTER user message is added and UI cleared
fn=generate_dream_response,
inputs=generation_inputs,
outputs=generation_outputs,
show_progress="hidden"
)
# 3. Clear Button
clear_btn.click(
clear_all,
inputs=[],
outputs=[
chat_history_state, chatbot_ui, user_input,
output_vis, response_text_display
]
)
return demo
# --- Launch ---
if __name__ == "__main__":
demo = create_chatbot_demo()
demo.queue().launch(debug=True, share=False) |