Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,58 +3,31 @@ import torch
|
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
import spaces
|
|
|
|
|
|
|
6 |
import time
|
7 |
import re
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
# or accessible in the Hugging Face cache.
|
23 |
-
model = AutoModel.from_pretrained(
|
24 |
-
MODEL_PATH,
|
25 |
-
torch_dtype=torch.bfloat16,
|
26 |
-
trust_remote_code=True
|
27 |
-
).to(DEVICE).eval()
|
28 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
29 |
-
MODEL_PATH,
|
30 |
-
trust_remote_code=True
|
31 |
-
)
|
32 |
-
print("Model and tokenizer loaded.")
|
33 |
|
34 |
# --- Constants ---
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
if MASK_ID is None: raise AttributeError # Handle case where it might not be set directly
|
40 |
-
except AttributeError:
|
41 |
-
print("Warning: Could not directly get mask_token_id, using hardcoded value 151666.")
|
42 |
-
MASK_ID = 151666
|
43 |
-
|
44 |
-
try:
|
45 |
-
EOS_ID = tokenizer.eos_token_id # Should be 151643
|
46 |
-
PAD_ID = tokenizer.pad_token_id # Should be 151643
|
47 |
-
if EOS_ID is None or PAD_ID is None: raise AttributeError
|
48 |
-
except AttributeError:
|
49 |
-
print("Warning: Could not directly get eos/pad_token_id, using hardcoded value 151643.")
|
50 |
-
EOS_ID = 151643
|
51 |
-
PAD_ID = 151643
|
52 |
-
|
53 |
-
# Ensure MASK_TOKEN and MASK_ID are valid
|
54 |
-
if MASK_TOKEN is None or MASK_ID is None:
|
55 |
-
raise ValueError("Mask token or ID is not defined correctly.")
|
56 |
-
if EOS_ID is None or PAD_ID is None:
|
57 |
-
raise ValueError("EOS/PAD token or ID is not defined correctly.")
|
58 |
|
59 |
# --- Helper Functions ---
|
60 |
|
@@ -71,13 +44,18 @@ def parse_constraints(constraints_text):
|
|
71 |
try:
|
72 |
pos_str, word = part.split(':', 1)
|
73 |
pos = int(pos_str.strip())
|
|
|
74 |
word = word.strip()
|
75 |
if word and pos >= 0:
|
76 |
# Tokenize the word - handle potential multi-token words
|
77 |
-
# Add space prefix for
|
78 |
-
|
|
|
79 |
for i, token_id in enumerate(tokens):
|
80 |
-
|
|
|
|
|
|
|
81 |
except ValueError:
|
82 |
continue
|
83 |
except Exception as e:
|
@@ -86,280 +64,459 @@ def parse_constraints(constraints_text):
|
|
86 |
|
87 |
return constraints
|
88 |
|
|
|
89 |
def format_chat_history(history):
|
90 |
"""
|
91 |
-
Format chat history for the Dream model using
|
92 |
|
93 |
Args:
|
94 |
history: List of [user_message, assistant_message] pairs
|
95 |
|
96 |
Returns:
|
97 |
-
Formatted list of message
|
98 |
"""
|
99 |
messages = []
|
100 |
-
#
|
101 |
-
if
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
for user_msg, assistant_msg in history:
|
107 |
-
|
108 |
-
|
109 |
if assistant_msg is not None: # Skip if None (for the latest user message)
|
110 |
messages.append({"role": "assistant", "content": assistant_msg})
|
111 |
|
112 |
return messages
|
113 |
|
114 |
-
# --- Core Generation Logic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
-
# Use a thread-safe queue to pass visualization states from the hook
|
117 |
-
vis_queue = Queue()
|
118 |
-
# Lock to prevent race conditions when accessing shared state like previous_x
|
119 |
-
state_lock = Lock()
|
120 |
-
# Store the previous state for comparison in the hook
|
121 |
-
previous_x_shared = None
|
122 |
|
123 |
@spaces.GPU
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
alg="entropy", # Default from demos
|
132 |
-
alg_temp=0.1, # Default from demo_multiturn_chat
|
133 |
-
):
|
134 |
"""
|
135 |
-
Generate text with Dream model
|
|
|
136 |
|
137 |
Args:
|
138 |
-
messages: List of message dictionaries with 'role' and 'content'
|
139 |
-
|
140 |
-
steps:
|
141 |
-
constraints: Dictionary mapping positions
|
142 |
-
temperature: Sampling temperature
|
143 |
-
top_p: Nucleus sampling
|
144 |
-
|
145 |
-
|
|
|
|
|
146 |
|
147 |
Returns:
|
148 |
-
|
149 |
"""
|
150 |
-
global previous_x_shared, vis_queue
|
151 |
if constraints is None:
|
152 |
-
constraints = {}
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
-
# Prepare the prompt using chat template
|
164 |
-
# The template automatically adds the generation prompt like "<|im_start|>assistant\n"
|
165 |
-
try:
|
166 |
-
inputs = tokenizer.apply_chat_template(
|
167 |
-
messages,
|
168 |
-
return_tensors="pt",
|
169 |
-
add_generation_prompt=True,
|
170 |
-
return_dict=True
|
171 |
-
)
|
172 |
-
input_ids = inputs.input_ids.to(device=DEVICE)
|
173 |
-
# Dream doesn't seem to explicitly use attention_mask in simple demos,
|
174 |
-
# but it's good practice if padding were involved.
|
175 |
-
# For now, assume no padding in this interactive demo.
|
176 |
-
attention_mask = inputs.attention_mask.to(device=DEVICE) if 'attention_mask' in inputs else None
|
177 |
-
|
178 |
-
except Exception as e:
|
179 |
-
print(f"Error applying chat template: {e}")
|
180 |
-
# Provide a fallback or error state
|
181 |
-
error_state = [("Error in chat formatting.", "red")]
|
182 |
-
return [error_state], f"Error: Could not format chat history. {e}"
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
# --- Define the Hook Function ---
|
188 |
-
def generation_tokens_hook_func(step, x, logits):
|
189 |
-
global previous_x_shared, vis_queue
|
190 |
-
with state_lock: # Ensure thread safety if needed, though hooks might run sequentially
|
191 |
-
current_x = x.clone() # Shape: (batch_size, total_length)
|
192 |
-
|
193 |
-
# --- Apply Constraints ---
|
194 |
-
# Constraints are relative to the start of the *response*
|
195 |
-
for rel_pos, token_id in constraints.items():
|
196 |
-
abs_pos = prompt_length + rel_pos
|
197 |
-
if 0 <= abs_pos < current_x.shape[1]:
|
198 |
-
# Ensure constraint application doesn't go out of bounds
|
199 |
-
# Apply constraint for the first batch element (batch size is 1 here)
|
200 |
-
current_x[0, abs_pos] = token_id
|
201 |
-
|
202 |
-
# --- Create Visualization State ---
|
203 |
-
current_vis_state = []
|
204 |
-
x_response = current_x[0, prompt_length:] # Get the response part for batch 0
|
205 |
-
prev_x_response = previous_x_shared[0, prompt_length:] if previous_x_shared is not None else None
|
206 |
-
|
207 |
-
for i in range(max_new_tokens):
|
208 |
-
current_token_id = x_response[i].item()
|
209 |
-
token_str = tokenizer.decode([current_token_id], skip_special_tokens=False) # Keep special tokens for vis
|
210 |
-
|
211 |
-
# Clean up visual representation of special tokens
|
212 |
-
if token_str == tokenizer.eos_token or token_str == tokenizer.pad_token:
|
213 |
-
token_str = "[EOS/PAD]" # Make it visually distinct
|
214 |
-
elif token_str == tokenizer.mask_token:
|
215 |
-
token_str = "[MASK]"
|
216 |
-
elif token_str.strip() == "": # Handle empty strings from decoding potentially odd tokens
|
217 |
-
token_str = "[UNK/SPACE]"
|
218 |
-
|
219 |
-
|
220 |
-
color = "#DDDDDD" # Default background
|
221 |
-
|
222 |
-
if current_token_id == MASK_ID:
|
223 |
-
color = "#444444" # Dark gray for masks
|
224 |
-
elif prev_x_response is not None and prev_x_response[i].item() == MASK_ID:
|
225 |
-
# Token was mask, now it's revealed in this step
|
226 |
-
# Use green for newly revealed
|
227 |
-
color = "#66CC66" # Light green
|
228 |
-
else:
|
229 |
-
# Token was already revealed in a previous step or is a constraint
|
230 |
-
# Check if it's a constraint applied *now*
|
231 |
-
is_constraint = (prompt_length + i - prompt_length) in constraints and \
|
232 |
-
constraints[prompt_length + i - prompt_length] == current_token_id
|
233 |
-
|
234 |
-
if is_constraint:
|
235 |
-
color = "#FFD700" # Gold for constraints
|
236 |
-
else:
|
237 |
-
color = "#6699CC" # Light blue for previously revealed
|
238 |
-
|
239 |
-
current_vis_state.append((token_str, color))
|
240 |
-
|
241 |
-
# --- Update shared state and put vis state in queue ---
|
242 |
-
previous_x_shared = current_x.clone() # Update for the *next* step's comparison
|
243 |
-
vis_queue.put(current_vis_state)
|
244 |
-
|
245 |
-
# The hook must return the potentially modified tensor `x`
|
246 |
-
return current_x
|
247 |
-
# --- End of Hook Function ---
|
248 |
-
|
249 |
-
# Initialize previous_x_shared before generation starts
|
250 |
-
# Create initial masked state for visualization
|
251 |
-
initial_x = input_ids.clone()
|
252 |
-
if initial_x.shape[1] < total_length:
|
253 |
-
padding = torch.full((1, total_length - initial_x.shape[1]), MASK_ID, dtype=torch.long, device=DEVICE)
|
254 |
-
initial_x = torch.cat([initial_x, padding], dim=1)
|
255 |
-
else:
|
256 |
-
initial_x = initial_x[:, :total_length] # Truncate if prompt is too long
|
257 |
|
258 |
-
# Apply initial constraints to
|
259 |
for rel_pos, token_id in constraints.items():
|
260 |
abs_pos = prompt_length + rel_pos
|
261 |
-
if
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
# Add the initial all-masked state (or with constraints) to the visualization queue
|
268 |
-
initial_vis_state = []
|
269 |
-
initial_x_response = initial_x[0, prompt_length:]
|
270 |
-
for i in range(max_new_tokens):
|
271 |
-
token_id = initial_x_response[i].item()
|
272 |
-
if token_id == MASK_ID:
|
273 |
-
initial_vis_state.append((MASK_TOKEN, "#444444"))
|
274 |
-
else:
|
275 |
-
# Must be a pre-applied constraint
|
276 |
-
token_str = tokenizer.decode([token_id], skip_special_tokens=False)
|
277 |
-
if token_str == tokenizer.eos_token or token_str == tokenizer.pad_token:
|
278 |
-
token_str = "[EOS/PAD]"
|
279 |
-
elif token_str.strip() == "":
|
280 |
-
token_str = "[UNK/SPACE]"
|
281 |
-
initial_vis_state.append((token_str, "#FFD700")) # Gold for constraints
|
282 |
-
vis_queue.put(initial_vis_state)
|
283 |
-
|
284 |
-
|
285 |
-
# --- Run Generation ---
|
286 |
-
try:
|
287 |
-
# output_history=False because the hook handles state capture
|
288 |
-
# return_dict_in_generate=True to get the GenerationOutput object
|
289 |
-
output = model.diffusion_generate(
|
290 |
-
initial_x, # Start with the potentially constraint-applied tensor
|
291 |
-
attention_mask=None, # Assuming no padding needed for interactive use
|
292 |
-
max_new_tokens=max_new_tokens, # This might not be strictly needed if total_length is fixed
|
293 |
-
output_history=False,
|
294 |
-
return_dict_in_generate=True,
|
295 |
-
steps=steps,
|
296 |
-
temperature=temperature,
|
297 |
-
top_p=top_p,
|
298 |
-
alg=alg,
|
299 |
-
alg_temp=alg_temp if alg != 'origin' else None, # alg_temp only for confidence algs
|
300 |
-
generation_tokens_hook_func=generation_tokens_hook_func
|
301 |
-
)
|
302 |
|
303 |
-
final_sequence = output.sequences[0] # Batch size 1
|
304 |
-
|
305 |
-
# Decode the final response text, cleaning up special tokens
|
306 |
-
response_tokens = final_sequence[prompt_length:]
|
307 |
-
# Filter out EOS/PAD tokens for the final text display
|
308 |
-
response_tokens_filtered = [tok for tok in response_tokens.tolist() if tok != EOS_ID and tok != PAD_ID]
|
309 |
-
final_text = tokenizer.decode(response_tokens_filtered,
|
310 |
-
skip_special_tokens=True,
|
311 |
-
clean_up_tokenization_spaces=True) # Standard cleanup
|
312 |
-
|
313 |
-
except Exception as e:
|
314 |
-
print(f"Error during generation: {e}")
|
315 |
-
import traceback
|
316 |
-
traceback.print_exc()
|
317 |
-
# Provide error state
|
318 |
-
error_state = [("Generation Error.", "red")]
|
319 |
-
visualization_states.append(error_state)
|
320 |
-
final_text = f"Error: Generation failed. {e}"
|
321 |
-
# Add any states captured before the error
|
322 |
-
while not vis_queue.empty():
|
323 |
-
try:
|
324 |
-
visualization_states.append(vis_queue.get_nowait())
|
325 |
-
except Queue.Empty:
|
326 |
-
break
|
327 |
-
return visualization_states, final_text
|
328 |
|
329 |
-
#
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
break
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
|
|
|
|
346 |
css = '''
|
347 |
.category-legend{display:none}
|
348 |
button{height: 60px}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
'''
|
|
|
350 |
def create_chatbot_demo():
|
351 |
-
with gr.Blocks(css=css) as demo:
|
352 |
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
|
353 |
-
gr.Markdown(
|
354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
# STATE MANAGEMENT
|
357 |
chat_history = gr.State([])
|
|
|
358 |
|
359 |
# UI COMPONENTS
|
360 |
with gr.Row():
|
361 |
with gr.Column(scale=3):
|
362 |
-
chatbot_ui = gr.Chatbot(label="Conversation", height=500,
|
363 |
|
364 |
# Message input
|
365 |
with gr.Group():
|
@@ -367,192 +524,229 @@ def create_chatbot_demo():
|
|
367 |
user_input = gr.Textbox(
|
368 |
label="Your Message",
|
369 |
placeholder="Type your message here...",
|
370 |
-
|
371 |
-
|
372 |
)
|
373 |
send_btn = gr.Button("Send", scale=1)
|
374 |
|
375 |
constraints_input = gr.Textbox(
|
376 |
-
label="Word Constraints (
|
377 |
-
info="Place words at specific
|
378 |
-
placeholder="0:
|
379 |
value=""
|
380 |
)
|
381 |
with gr.Column(scale=2):
|
|
|
382 |
output_vis = gr.HighlightedText(
|
383 |
-
label="
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
"
|
390 |
-
"
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
)
|
395 |
|
|
|
396 |
# Advanced generation settings
|
397 |
with gr.Accordion("Generation Settings", open=False):
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
value=
|
418 |
-
label="
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
|
429 |
# Clear button
|
430 |
clear_btn = gr.Button("Clear Conversation")
|
431 |
|
432 |
-
#
|
433 |
def add_message_to_history(history, message, response):
|
434 |
"""Add a message pair to the history state"""
|
435 |
-
|
436 |
-
return
|
437 |
|
438 |
-
def
|
439 |
-
"""
|
440 |
if not message or message.strip() == "":
|
441 |
-
return history, history, "", [] #
|
442 |
-
|
443 |
-
# Add user message
|
444 |
-
|
445 |
-
|
446 |
-
#
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
def bot_response_generator(history, constraints_str, max_tokens, steps, temp, top_p, alg, alg_temp, delay):
|
458 |
-
""" Generator function to stream bot response and visualization """
|
459 |
-
if not history or history[-1][1] is not None: # Ensure there's a user msg waiting for response
|
460 |
-
print("Warning: Bot response triggered without pending user message.")
|
461 |
-
yield history, [], "Error: No user message to respond to." # Send error state back?
|
462 |
return
|
463 |
|
464 |
-
# Get the full conversation history formatted for the model
|
465 |
last_user_message = history[-1][0]
|
466 |
-
|
467 |
-
messages_for_model.append({"role": "user", "content": last_user_message})
|
468 |
|
469 |
-
# Parse constraints
|
470 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
471 |
parsed_constraints = parse_constraints(constraints_str)
|
472 |
-
|
473 |
-
print(f"Error parsing constraints: {e}")
|
474 |
-
yield history, [("Constraint Error", "red")], f"Error: Failed to parse constraints: {e}"
|
475 |
-
return
|
476 |
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
|
|
|
|
482 |
steps=steps,
|
483 |
constraints=parsed_constraints,
|
484 |
-
temperature=
|
485 |
-
top_p=top_p,
|
|
|
486 |
alg=alg,
|
487 |
-
alg_temp=alg_temp
|
488 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
489 |
except Exception as e:
|
490 |
-
print(f"Error in generate_response_with_visualization: {e}")
|
491 |
import traceback
|
|
|
492 |
traceback.print_exc()
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
|
499 |
-
|
500 |
-
if vis_states:
|
501 |
-
yield history, vis_states[0]
|
502 |
-
else:
|
503 |
-
yield history, [] # Should not happen if generation worked
|
504 |
-
|
505 |
-
# Stream intermediate visualization states
|
506 |
-
for state in vis_states[1:]:
|
507 |
-
time.sleep(delay)
|
508 |
-
yield history, state
|
509 |
-
|
510 |
-
# Final yield ensures the chatbot UI has the complete history
|
511 |
-
# The last state in vis_states should already be yielded by the loop
|
512 |
-
# yield history, vis_states[-1] if vis_states else []
|
513 |
-
|
514 |
-
|
515 |
-
def clear_conversation():
|
516 |
-
"""Clear the conversation history and visualization"""
|
517 |
-
return [], [], "", [] # history, chatbot_ui, user_input, output_vis
|
518 |
-
|
519 |
-
# EVENT HANDLERS
|
520 |
-
|
521 |
-
# User presses Enter or Send button
|
522 |
-
submit_args = {
|
523 |
-
"fn": user_message_submitted,
|
524 |
-
"inputs": [user_input, chat_history],
|
525 |
-
"outputs": [chat_history, chatbot_ui, user_input, output_vis]
|
526 |
-
}
|
527 |
-
user_input.submit(**submit_args)
|
528 |
-
send_btn.click(**submit_args)
|
529 |
-
|
530 |
-
# After user message is submitted, trigger bot response generation
|
531 |
-
generate_args = {
|
532 |
-
"fn": bot_response_generator,
|
533 |
-
"inputs": [
|
534 |
-
chat_history, constraints_input, max_new_tokens_slider, steps_slider,
|
535 |
-
temp_slider, top_p_slider, alg_radio, alg_temp_slider, vis_delay_slider
|
536 |
-
],
|
537 |
-
"outputs": [chatbot_ui, output_vis] # Update chatbot history and visualization
|
538 |
-
}
|
539 |
-
# Trigger generation after submit OR click
|
540 |
-
user_input.submit(None, None, None, queue=True).then(**generate_args)
|
541 |
-
send_btn.click(None, None, None, queue=True).then(**generate_args)
|
542 |
-
|
543 |
-
|
544 |
-
# Clear button handler
|
545 |
clear_btn.click(
|
546 |
-
fn=
|
547 |
inputs=[],
|
548 |
-
outputs=[chat_history, chatbot_ui,
|
|
|
549 |
)
|
550 |
|
551 |
return demo
|
552 |
|
553 |
-
# Launch
|
554 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
555 |
demo = create_chatbot_demo()
|
556 |
-
|
557 |
-
#
|
558 |
-
demo.queue().launch(share=True, debug=True)
|
|
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from transformers import AutoTokenizer, AutoModel
|
8 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
9 |
import time
|
10 |
import re
|
11 |
+
import torch.distributions as dists # Import dists for sampling logic
|
12 |
+
|
13 |
+
# --- Model Loading ---
|
14 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
15 |
+
print(f"Using device: {device}")
|
16 |
+
|
17 |
+
# Load Dream model and tokenizer
|
18 |
+
model_path = "Dream-org/Dream-v0-Instruct-7B"
|
19 |
+
# Load configuration first to get token IDs
|
20 |
+
config = DreamConfig.from_pretrained(model_path) # Assuming configuration_dream.py is present
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
22 |
+
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True)
|
23 |
+
model = model.to(device).eval()
|
24 |
+
print("Model and Tokenizer loaded.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# --- Constants ---
|
27 |
+
MASK_TOKEN = tokenizer.mask_token # "<|mask|>"
|
28 |
+
MASK_ID = config.mask_token_id # Get from config (e.g., 151666)
|
29 |
+
EOS_ID = config.eos_token_id # Get from config (e.g., 151643)
|
30 |
+
PAD_ID = config.pad_token_id # Get from config (e.g., 151643)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# --- Helper Functions ---
|
33 |
|
|
|
44 |
try:
|
45 |
pos_str, word = part.split(':', 1)
|
46 |
pos = int(pos_str.strip())
|
47 |
+
# Use strip() and lower() for robustness if needed, but preserve case for now
|
48 |
word = word.strip()
|
49 |
if word and pos >= 0:
|
50 |
# Tokenize the word - handle potential multi-token words
|
51 |
+
# Add space prefix typical for non-leading words if pos > 0
|
52 |
+
prefix = " " if pos > 0 else ""
|
53 |
+
tokens = tokenizer.encode(prefix + word, add_special_tokens=False)
|
54 |
for i, token_id in enumerate(tokens):
|
55 |
+
# Only add if the token is not a special token id already
|
56 |
+
# (This prevents accidental replacement of things like MASK_ID)
|
57 |
+
if token_id not in [MASK_ID, EOS_ID, PAD_ID]:
|
58 |
+
constraints[pos + i] = token_id
|
59 |
except ValueError:
|
60 |
continue
|
61 |
except Exception as e:
|
|
|
64 |
|
65 |
return constraints
|
66 |
|
67 |
+
|
68 |
def format_chat_history(history):
|
69 |
"""
|
70 |
+
Format chat history for the Dream model (using ChatML format potentially)
|
71 |
|
72 |
Args:
|
73 |
history: List of [user_message, assistant_message] pairs
|
74 |
|
75 |
Returns:
|
76 |
+
Formatted conversation for the model (list of message dicts)
|
77 |
"""
|
78 |
messages = []
|
79 |
+
# Check if the first message is a system prompt
|
80 |
+
if history and history[0][0].lower().startswith("system:"):
|
81 |
+
# Special handling if needed, or just treat as user
|
82 |
+
# For now, let's assume standard user/assistant alternation
|
83 |
+
pass # Or handle system prompt separately if template requires
|
84 |
+
|
85 |
+
for i, (user_msg, assistant_msg) in enumerate(history):
|
86 |
+
# Basic user/assistant structure
|
87 |
+
messages.append({"role": "user", "content": user_msg})
|
88 |
if assistant_msg is not None: # Skip if None (for the latest user message)
|
89 |
messages.append({"role": "assistant", "content": assistant_msg})
|
90 |
|
91 |
return messages
|
92 |
|
93 |
+
# --- Core Generation Logic (Adapted from Dream's _sample) ---
|
94 |
+
|
95 |
+
def sample_tokens_for_vis(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
|
96 |
+
"""
|
97 |
+
Simplified version of Dream's sample_tokens to get both token and confidence.
|
98 |
+
Returns confidence and chosen token ID.
|
99 |
+
"""
|
100 |
+
# Apply temperature
|
101 |
+
if temperature > 0:
|
102 |
+
logits = logits / temperature
|
103 |
+
|
104 |
+
# Apply Top-P
|
105 |
+
if top_p is not None and top_p < 1.0:
|
106 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
107 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
108 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
109 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
110 |
+
sorted_indices_to_remove[..., 0] = 0
|
111 |
+
indices_to_remove = torch.zeros_like(logits, dtype=torch.bool).scatter_(-1, sorted_indices, sorted_indices_to_remove)
|
112 |
+
logits = logits.masked_fill(indices_to_remove, float('-inf'))
|
113 |
+
|
114 |
+
# Apply Top-K
|
115 |
+
if top_k is not None and top_k > 0:
|
116 |
+
top_k = min(top_k, logits.size(-1))
|
117 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
118 |
+
logits = logits.masked_fill(indices_to_remove, float('-inf'))
|
119 |
+
|
120 |
+
# Calculate probabilities
|
121 |
+
probs = torch.softmax(logits, dim=-1)
|
122 |
+
|
123 |
+
# Sample or Argmax
|
124 |
+
if temperature > 0:
|
125 |
+
# Use torch distributions for robust sampling
|
126 |
+
dist = dists.Categorical(probs=probs)
|
127 |
+
x0 = dist.sample()
|
128 |
+
# Gather confidence for the sampled token
|
129 |
+
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
|
130 |
+
else:
|
131 |
+
# Argmax for deterministic generation
|
132 |
+
confidence, x0 = torch.max(probs, dim=-1)
|
133 |
+
|
134 |
+
# --- Calculate specific confidence metrics if requested ---
|
135 |
+
# Note: These modify the 'confidence' variable *after* sampling x0
|
136 |
+
if margin_confidence:
|
137 |
+
if probs.shape[-1] >= 2:
|
138 |
+
# Ensure logits weren't completely masked, handle edge cases
|
139 |
+
if not torch.isinf(logits).all(dim=-1).any():
|
140 |
+
# Sort probabilities to get top1 and top2
|
141 |
+
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
|
142 |
+
top1_probs = sorted_probs[..., 0]
|
143 |
+
top2_probs = sorted_probs[..., 1]
|
144 |
+
confidence = top1_probs - top2_probs
|
145 |
+
else:
|
146 |
+
# Fallback if all logits are -inf (shouldn't normally happen)
|
147 |
+
confidence.fill_(0.0) # Or some other indicator
|
148 |
+
else:
|
149 |
+
# Only one possible token, margin is undefined or 1? Set to top1 prob.
|
150 |
+
confidence, _ = torch.max(probs, dim=-1)
|
151 |
+
|
152 |
+
elif neg_entropy:
|
153 |
+
epsilon = 1e-9 # Slightly smaller epsilon
|
154 |
+
log_probs = torch.log(probs + epsilon)
|
155 |
+
# Negative entropy is sum(p * log(p))
|
156 |
+
confidence = torch.sum(probs * log_probs, dim=-1) # Lower value (more negative) is higher confidence
|
157 |
+
|
158 |
+
return confidence, x0
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
@spaces.GPU
|
162 |
+
@torch.no_grad()
|
163 |
+
def generate_response_with_visualization_dream(
|
164 |
+
messages, gen_length=64, steps=64,
|
165 |
+
constraints=None, temperature=0.2, top_p=0.95, top_k=None, # Added top_k
|
166 |
+
alg="entropy", alg_temp=0.1, # Dream specific params
|
167 |
+
yield_intermediate=True # Control yielding behavior
|
168 |
+
):
|
|
|
|
|
|
|
169 |
"""
|
170 |
+
Generate text with Dream model with real-time visualization.
|
171 |
+
Adapts logic from Dream's _sample method.
|
172 |
|
173 |
Args:
|
174 |
+
messages: List of message dictionaries with 'role' and 'content'
|
175 |
+
gen_length: Max new tokens to generate
|
176 |
+
steps: Number of diffusion steps
|
177 |
+
constraints: Dictionary mapping positions to *token IDs*
|
178 |
+
temperature: Sampling temperature
|
179 |
+
top_p: Nucleus sampling probability
|
180 |
+
top_k: Top-k sampling
|
181 |
+
alg: Remasking strategy ('origin', 'maskgit_plus', 'topk_margin', 'entropy')
|
182 |
+
alg_temp: Temperature for confidence-based remasking randomness
|
183 |
+
yield_intermediate: Whether to yield intermediate states for visualization
|
184 |
|
185 |
Returns:
|
186 |
+
Yields visualization states or returns final state list, and final text.
|
187 |
"""
|
|
|
188 |
if constraints is None:
|
189 |
+
constraints = {} # keys are positions relative to start of response
|
190 |
|
191 |
+
# --- Prepare Input ---
|
192 |
+
chat_input_text = tokenizer.apply_chat_template(
|
193 |
+
messages, add_generation_prompt=True, tokenize=False
|
194 |
+
)
|
195 |
+
input_ids = tokenizer(chat_input_text, return_tensors="pt")['input_ids'].to(device)
|
196 |
+
prompt_length = input_ids.shape[1]
|
197 |
+
max_length = prompt_length + gen_length
|
198 |
+
|
199 |
+
# Clamp max_length if it exceeds model capacity (use config value if available)
|
200 |
+
model_max_len = getattr(config, 'max_position_embeddings', 2048) # Default fallback
|
201 |
+
if max_length > model_max_len:
|
202 |
+
print(f"Warning: Requested length ({max_length}) exceeds model max ({model_max_len}). Clamping.")
|
203 |
+
max_length = model_max_len
|
204 |
+
gen_length = max_length - prompt_length
|
205 |
+
if gen_length <= 0:
|
206 |
+
print("Warning: Prompt is already at or exceeding model max length. Cannot generate.")
|
207 |
+
if yield_intermediate:
|
208 |
+
yield [], "Error: Prompt too long."
|
209 |
+
return
|
210 |
+
else:
|
211 |
+
return [], "Error: Prompt too long."
|
212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
# Initialize sequence 'x' with input_ids and padding with MASK_ID
|
215 |
+
x = torch.full((1, max_length), MASK_ID, dtype=torch.long, device=device)
|
216 |
+
x[:, :prompt_length] = input_ids.clone()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
+
# Apply initial constraints to x (relative position -> absolute position)
|
219 |
for rel_pos, token_id in constraints.items():
|
220 |
abs_pos = prompt_length + rel_pos
|
221 |
+
if abs_pos < max_length:
|
222 |
+
# Ensure we don't overwrite prompt or special tokens accidentally
|
223 |
+
if token_id not in [MASK_ID, EOS_ID, PAD_ID]:
|
224 |
+
x[:, abs_pos] = token_id
|
225 |
+
else:
|
226 |
+
print(f"Warning: Skipped constraint for special token ID {token_id} at pos {rel_pos}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
+
# --- Visualization Setup ---
|
230 |
+
visualization_states = []
|
231 |
+
revealed_eos_pad = set() # Track positions where EOS/PAD was shown once
|
232 |
+
|
233 |
+
def get_vis_state(current_x, old_x, step_confidences=None):
|
234 |
+
nonlocal revealed_eos_pad
|
235 |
+
state = []
|
236 |
+
newly_revealed_in_step = False # Flag if any token changed from MASK
|
237 |
+
current_revealed_eos_pad = set() # Track EOS/PAD revealed *in this step*
|
238 |
+
|
239 |
+
for i in range(gen_length):
|
240 |
+
abs_pos = prompt_length + i
|
241 |
+
current_token_id = current_x[0, abs_pos].item()
|
242 |
+
old_token_id = old_x[0, abs_pos].item()
|
243 |
+
|
244 |
+
is_eos_or_pad = (current_token_id == EOS_ID or current_token_id == PAD_ID)
|
245 |
+
|
246 |
+
# Handle EOS/PAD hiding: Show once, then hide
|
247 |
+
if is_eos_or_pad and abs_pos in revealed_eos_pad:
|
248 |
+
state.append(("", "#FFFFFF")) # Make it invisible (white on white/transparent)
|
249 |
+
continue # Skip rest of logic for this pos
|
250 |
+
|
251 |
+
token_str = tokenizer.decode([current_token_id], skip_special_tokens=False) # Decode even specials initially
|
252 |
+
|
253 |
+
if current_token_id == MASK_ID:
|
254 |
+
color = "#444444" # Dark Gray for Mask
|
255 |
+
token_str = MASK_TOKEN # Display mask token string
|
256 |
+
elif old_token_id == MASK_ID: # Newly revealed in this step
|
257 |
+
newly_revealed_in_step = True
|
258 |
+
confidence = step_confidences.get(abs_pos, 0.5) # Get confidence if available, default 0.5
|
259 |
+
|
260 |
+
# Color based on confidence (adjust thresholds as needed)
|
261 |
+
# Note: Entropy confidence is negative, more negative = higher confidence
|
262 |
+
if alg == 'entropy':
|
263 |
+
# Example thresholds for negative entropy (adjust based on observation)
|
264 |
+
if confidence > -1.0: # Low confidence (high entropy)
|
265 |
+
color = "#FF6666" # Light Red
|
266 |
+
elif confidence > -3.0: # Medium confidence
|
267 |
+
color = "#FFAA33" # Orange
|
268 |
+
else: # High confidence (low entropy)
|
269 |
+
color = "#66CC66" # Light Green
|
270 |
+
else: # Standard confidence (probability or margin)
|
271 |
+
if confidence < 0.3:
|
272 |
+
color = "#FF6666" # Light Red
|
273 |
+
elif confidence < 0.7:
|
274 |
+
color = "#FFAA33" # Orange
|
275 |
+
else:
|
276 |
+
color = "#66CC66" # Light Green
|
277 |
+
|
278 |
+
# If it's EOS/PAD revealed now, mark for future hiding
|
279 |
+
if is_eos_or_pad:
|
280 |
+
current_revealed_eos_pad.add(abs_pos)
|
281 |
+
|
282 |
+
else: # Previously revealed
|
283 |
+
color = "#6699CC" # Light Blue
|
284 |
+
|
285 |
+
# Clean up token string for display (optional)
|
286 |
+
# token_str = token_str.replace(" ", " ") # Keep spaces visible
|
287 |
+
|
288 |
+
state.append((token_str, color))
|
289 |
+
|
290 |
+
# Update the global set of revealed EOS/PAD positions
|
291 |
+
revealed_eos_pad.update(current_revealed_eos_pad)
|
292 |
+
|
293 |
+
return state, newly_revealed_in_step
|
294 |
+
|
295 |
+
# Add initial state (all masked, constraints applied)
|
296 |
+
initial_vis_state, _ = get_vis_state(x, x) # Pass x as old_x initially
|
297 |
+
visualization_states.append(initial_vis_state)
|
298 |
+
if yield_intermediate:
|
299 |
+
yield initial_vis_state # Yield the starting state
|
300 |
+
|
301 |
+
# --- Diffusion Loop ---
|
302 |
+
timesteps = torch.linspace(1.0, 1e-3, steps + 1, device=device) # Use epsilon from Dream's defaults if needed
|
303 |
+
|
304 |
+
# Store the state before the loop starts
|
305 |
+
old_x = x.clone()
|
306 |
+
|
307 |
+
for i in range(steps):
|
308 |
+
# --- Core Dream Step ---
|
309 |
+
mask_index = (x == MASK_ID)
|
310 |
+
if not mask_index.any(): # Stop if no masks left
|
311 |
+
print(f"No masks left at step {i}. Stopping generation.")
|
312 |
break
|
313 |
|
314 |
+
# Prepare attention mask (full attention for Dream unless specified otherwise)
|
315 |
+
# Dream's modeling code handles standard causal masking internally based on position_ids
|
316 |
+
# For diffusion, we typically allow attending to everything (masked or not)
|
317 |
+
# The `model` forward pass expects a standard causal mask or None
|
318 |
+
# Let's use None, assuming the model handles positions correctly
|
319 |
+
attention_mask = None # Or potentially create a full mask: torch.ones_like(x)
|
320 |
+
|
321 |
+
# Create position_ids (simple range for now)
|
322 |
+
position_ids = torch.arange(0, x.shape[1], device=device).unsqueeze(0)
|
323 |
+
|
324 |
+
# Model forward pass
|
325 |
+
outputs = model(input_ids=x, attention_mask=attention_mask, position_ids=position_ids)
|
326 |
+
logits = outputs.logits
|
327 |
+
# logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1) # Dream applies shift in utils, replicate if needed
|
328 |
+
|
329 |
+
# Select logits for masked positions ONLY
|
330 |
+
# Need to handle batch dimension (which is 1 here)
|
331 |
+
current_mask_indices_flat = torch.where(mask_index.flatten())[0]
|
332 |
+
if len(current_mask_indices_flat) == 0:
|
333 |
+
print(f"No mask indices found flat at step {i}. Stopping generation.")
|
334 |
+
break
|
335 |
|
336 |
+
# Use advanced indexing to get logits for masked positions
|
337 |
+
# Logits shape: [batch_size, seq_len, vocab_size]
|
338 |
+
# Mask_index shape: [batch_size, seq_len]
|
339 |
+
# We need logits corresponding to True values in mask_index
|
340 |
+
# Example: batch_idx = torch.where(mask_index)[0], seq_idx = torch.where(mask_index)[1]
|
341 |
+
# mask_logits = logits[batch_idx, seq_idx]
|
342 |
+
batch_indices, seq_indices = torch.where(mask_index)
|
343 |
+
mask_logits = logits[batch_indices, seq_indices] # Shape: [num_masked_tokens, vocab_size]
|
344 |
+
|
345 |
+
if mask_logits.numel() == 0: # Double check after indexing
|
346 |
+
print(f"No mask logits selected at step {i}. Stopping generation.")
|
347 |
+
break
|
348 |
|
349 |
+
t = timesteps[i]
|
350 |
+
s = timesteps[i + 1]
|
351 |
+
|
352 |
+
# --- Remasking Logic (Simplified from Dream's _sample) ---
|
353 |
+
step_confidences = {} # Store confidences for revealed tokens in this step {abs_pos: confidence}
|
354 |
+
|
355 |
+
if alg == 'origin':
|
356 |
+
p_transfer = (1.0 - s / t) if i < steps - 1 else 1.0
|
357 |
+
# Sample for all masked positions
|
358 |
+
confidence, x0_masked = sample_tokens_for_vis(mask_logits, temperature=temperature, top_p=top_p, top_k=top_k)
|
359 |
+
# Decide which ones to transfer based on random probability
|
360 |
+
transfer_mask = torch.rand(x0_masked.shape, device=device) < p_transfer
|
361 |
+
# Create a tensor of MASK_IDs, and fill in the transferred tokens
|
362 |
+
updates_for_masked_pos = torch.full_like(x0_masked, MASK_ID)
|
363 |
+
updates_for_masked_pos[transfer_mask] = x0_masked[transfer_mask]
|
364 |
+
# Update x at the masked positions
|
365 |
+
x[mask_index] = updates_for_masked_pos
|
366 |
+
|
367 |
+
# Store confidences for the *transferred* tokens for visualization
|
368 |
+
transferred_indices_flat = current_mask_indices_flat[transfer_mask]
|
369 |
+
transferred_confidences = confidence[transfer_mask]
|
370 |
+
for flat_idx, conf in zip(transferred_indices_flat, transferred_confidences):
|
371 |
+
abs_pos = flat_idx.item() # Convert flat index back to seq position (assuming batch=1)
|
372 |
+
step_confidences[abs_pos] = conf.item()
|
373 |
+
|
374 |
+
|
375 |
+
else: # Confidence-based algorithms ('maskgit_plus', 'topk_margin', 'entropy')
|
376 |
+
use_margin = (alg == 'topk_margin')
|
377 |
+
use_entropy = (alg == 'entropy')
|
378 |
+
# Sample potential replacements for ALL masked positions first
|
379 |
+
confidence, x0_masked = sample_tokens_for_vis(
|
380 |
+
mask_logits,
|
381 |
+
temperature=temperature,
|
382 |
+
top_p=top_p,
|
383 |
+
top_k=top_k,
|
384 |
+
margin_confidence=use_margin,
|
385 |
+
neg_entropy=use_entropy
|
386 |
+
)
|
387 |
|
388 |
+
num_mask_tokens = mask_index.sum().item()
|
389 |
+
# Calculate how many tokens to unmask/transfer in this step
|
390 |
+
num_transfer_tokens = int(num_mask_tokens * (1.0 - s / t)) if i < steps - 1 else num_mask_tokens
|
391 |
+
|
392 |
+
if num_transfer_tokens > 0 and confidence.numel() > 0:
|
393 |
+
transfer_indices_relative = None # Indices relative to the masked tokens
|
394 |
+
if alg_temp is None or alg_temp <= 0:
|
395 |
+
# Deterministic: Select top-k confidence scores among masked tokens
|
396 |
+
# Ensure k is not larger than the number of masked tokens
|
397 |
+
k = min(num_transfer_tokens, confidence.shape[0])
|
398 |
+
if k > 0:
|
399 |
+
_, transfer_indices_relative = torch.topk(confidence, k)
|
400 |
+
else:
|
401 |
+
# Stochastic: Sample based on confidence scores
|
402 |
+
# Ensure probabilities are valid
|
403 |
+
conf_probs = F.softmax(confidence / alg_temp, dim=-1)
|
404 |
+
if not torch.isnan(conf_probs).any() and not torch.isinf(conf_probs).any() and conf_probs.sum() > 1e-6:
|
405 |
+
# Ensure k is not larger than the number of masked tokens
|
406 |
+
k = min(num_transfer_tokens, confidence.shape[0])
|
407 |
+
if k > 0:
|
408 |
+
transfer_indices_relative = torch.multinomial(conf_probs, num_samples=k, replacement=False)
|
409 |
+
else:
|
410 |
+
print(f"Warning: Invalid confidence probabilities at step {i}. Falling back to top-k.")
|
411 |
+
# Fallback to deterministic if sampling fails
|
412 |
+
k = min(num_transfer_tokens, confidence.shape[0])
|
413 |
+
if k > 0:
|
414 |
+
_, transfer_indices_relative = torch.topk(confidence, k)
|
415 |
+
|
416 |
+
|
417 |
+
if transfer_indices_relative is not None and transfer_indices_relative.numel() > 0:
|
418 |
+
# Create updates, initially all MASK_ID
|
419 |
+
updates_for_masked_pos = torch.full_like(x0_masked, MASK_ID)
|
420 |
+
# Place the selected sampled tokens into the updates tensor
|
421 |
+
updates_for_masked_pos[transfer_indices_relative] = x0_masked[transfer_indices_relative]
|
422 |
+
# Update x at the original masked positions
|
423 |
+
x[mask_index] = updates_for_masked_pos
|
424 |
+
|
425 |
+
# Store confidences for the *transferred* tokens for visualization
|
426 |
+
selected_confidences = confidence[transfer_indices_relative]
|
427 |
+
# Get the absolute positions corresponding to these relative indices
|
428 |
+
original_indices_flat = current_mask_indices_flat[transfer_indices_relative]
|
429 |
+
for flat_idx, conf in zip(original_indices_flat, selected_confidences):
|
430 |
+
abs_pos = flat_idx.item()
|
431 |
+
step_confidences[abs_pos] = conf.item()
|
432 |
|
433 |
+
else:
|
434 |
+
# No tokens were selected to transfer, x remains unchanged for masked parts
|
435 |
+
pass # x[mask_index] remains MASK_ID essentially
|
436 |
+
|
437 |
+
else:
|
438 |
+
# If num_transfer_tokens is 0, x remains unchanged for masked parts
|
439 |
+
pass
|
440 |
+
|
441 |
+
# --- Apply Constraints and Finalize Step ---
|
442 |
+
# Ensure constraints are always maintained AFTER updates
|
443 |
+
for rel_pos, token_id in constraints.items():
|
444 |
+
abs_pos = prompt_length + rel_pos
|
445 |
+
if abs_pos < max_length:
|
446 |
+
# Check if the position was masked before applying constraint
|
447 |
+
# if mask_index[0, abs_pos]: # Only apply if it *was* a mask, maybe? Optional.
|
448 |
+
x[:, abs_pos] = token_id
|
449 |
+
|
450 |
+
# --- Visualization Update ---
|
451 |
+
current_vis_state, newly_revealed = get_vis_state(x, old_x, step_confidences)
|
452 |
+
|
453 |
+
# Only add/yield if something actually changed or if it's the last step
|
454 |
+
if newly_revealed or i == steps - 1:
|
455 |
+
visualization_states.append(current_vis_state)
|
456 |
+
if yield_intermediate:
|
457 |
+
yield current_vis_state
|
458 |
+
|
459 |
+
# Update old_x for the next iteration
|
460 |
+
old_x = x.clone()
|
461 |
+
|
462 |
+
|
463 |
+
# --- Final Output ---
|
464 |
+
response_tokens = x[0, prompt_length:]
|
465 |
+
# Decode, cleaning up potential special tokens unless they are intended
|
466 |
+
final_text = tokenizer.decode(response_tokens,
|
467 |
+
skip_special_tokens=True, # Skip things like <|mask|> in final output
|
468 |
+
clean_up_tokenization_spaces=True)
|
469 |
+
|
470 |
+
# If not yielding intermediates, return the full list now
|
471 |
+
if not yield_intermediate:
|
472 |
+
return visualization_states, final_text
|
473 |
+
else:
|
474 |
+
# If yielding intermediates, we still need a way to signal completion
|
475 |
+
# and return the final text. Gradio's yield typically handles this if
|
476 |
+
# the last yielded value is the final one. We'll return the final text
|
477 |
+
# separately after the loop finishes in the calling function.
|
478 |
+
# The loop yields states, the calling function returns the final text.
|
479 |
+
pass # Final text is handled outside the generator function
|
480 |
|
481 |
+
|
482 |
+
# --- Gradio UI ---
|
483 |
css = '''
|
484 |
.category-legend{display:none}
|
485 |
button{height: 60px}
|
486 |
+
.token-revealed { transition: background-color 0.5s ease; } /* Optional: Add transition effect */
|
487 |
+
.token-masked { background-color: #444444; color: white; padding: 1px 2px; margin: 1px; border-radius: 3px; display: inline-block; }
|
488 |
+
.token-new-high { background-color: #66CC66; color: black; padding: 1px 2px; margin: 1px; border-radius: 3px; display: inline-block; }
|
489 |
+
.token-new-mid { background-color: #FFAA33; color: black; padding: 1px 2px; margin: 1px; border-radius: 3px; display: inline-block; }
|
490 |
+
.token-new-low { background-color: #FF6666; color: black; padding: 1px 2px; margin: 1px; border-radius: 3px; display: inline-block; }
|
491 |
+
.token-old { background-color: #6699CC; color: white; padding: 1px 2px; margin: 1px; border-radius: 3px; display: inline-block; }
|
492 |
+
.token-hidden { display: none; } /* Hide EOS/PAD after first reveal */
|
493 |
'''
|
494 |
+
|
495 |
def create_chatbot_demo():
|
496 |
+
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
497 |
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
|
498 |
+
gr.Markdown(
|
499 |
+
"[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] "
|
500 |
+
"[[Blog](https://hkunlp.github.io/blog/2025/dream/)] "
|
501 |
+
"[[Original LLaDA Demo Inspiration](https://huggingface.co/spaces/GSAI-ML/LLaDA-demo)]"
|
502 |
+
)
|
503 |
+
gr.Markdown(
|
504 |
+
"**Note:** This demo visualizes the diffusion process in real-time. "
|
505 |
+
"Tokens start masked (<font color='#444444'>[MASK]</font>) and are revealed step-by-step. "
|
506 |
+
"Colors indicate confidence: <font color='#66CC66'>High</font>, "
|
507 |
+
"<font color='#FFAA33'>Medium</font>, <font color='#FF6666'>Low</font>. "
|
508 |
+
"Previously revealed tokens are <font color='#6699CC'>blue</font>. "
|
509 |
+
f"EOS/PAD tokens ({tokenizer.decode([EOS_ID])}) are hidden after appearing once."
|
510 |
+
)
|
511 |
|
512 |
# STATE MANAGEMENT
|
513 |
chat_history = gr.State([])
|
514 |
+
current_response_text = gr.State("") # Store the final text separately
|
515 |
|
516 |
# UI COMPONENTS
|
517 |
with gr.Row():
|
518 |
with gr.Column(scale=3):
|
519 |
+
chatbot_ui = gr.Chatbot(label="Conversation", height=500, bubble_full_width=False)
|
520 |
|
521 |
# Message input
|
522 |
with gr.Group():
|
|
|
524 |
user_input = gr.Textbox(
|
525 |
label="Your Message",
|
526 |
placeholder="Type your message here...",
|
527 |
+
scale=7,
|
528 |
+
show_label=False
|
529 |
)
|
530 |
send_btn = gr.Button("Send", scale=1)
|
531 |
|
532 |
constraints_input = gr.Textbox(
|
533 |
+
label="Word Constraints (Relative Position)",
|
534 |
+
info="Place words at specific 0-indexed positions in the *response*. Format: 'pos:word, pos:word'. Example: '0:Once, 5:upon, 10:time'",
|
535 |
+
placeholder="0:Hello, 10:world",
|
536 |
value=""
|
537 |
)
|
538 |
with gr.Column(scale=2):
|
539 |
+
# Use HighlightedText with specific classes for better styling control
|
540 |
output_vis = gr.HighlightedText(
|
541 |
+
label="Denoising Process Visualization",
|
542 |
+
# Show legend mapping colors to confidence might be useful if classes aren't self-explanatory
|
543 |
+
# For now, using the description markdown above.
|
544 |
+
show_legend=False,
|
545 |
+
# Use custom classes defined in CSS
|
546 |
+
# color_map={ # This might not work directly with dynamic classes, CSS is better
|
547 |
+
# "MASK": "#444444", "NEW_H": "#66CC66", "NEW_M": "#FFAA33",
|
548 |
+
# "NEW_L": "#FF6666", "OLD": "#6699CC", "HIDDEN": "#FFFFFF"
|
549 |
+
# }
|
550 |
+
combine_adjacent=False, # Keep tokens separate
|
551 |
+
height=550, # Adjust height as needed
|
552 |
)
|
553 |
|
554 |
+
|
555 |
# Advanced generation settings
|
556 |
with gr.Accordion("Generation Settings", open=False):
|
557 |
+
with gr.Row():
|
558 |
+
gen_length = gr.Slider(
|
559 |
+
minimum=16, maximum=512, value=64, step=8, # Increased max length
|
560 |
+
label="Max New Tokens"
|
561 |
+
)
|
562 |
+
steps = gr.Slider(
|
563 |
+
minimum=8, maximum=512, value=64, step=4, # Allow more steps
|
564 |
+
label="Diffusion Steps"
|
565 |
+
)
|
566 |
+
with gr.Row():
|
567 |
+
temperature = gr.Slider(
|
568 |
+
minimum=0.0, maximum=1.5, value=0.2, step=0.05, # Wider range for temp
|
569 |
+
label="Temperature"
|
570 |
+
)
|
571 |
+
top_p = gr.Slider(
|
572 |
+
minimum=0.0, maximum=1.0, value=0.95, step=0.05,
|
573 |
+
label="Top-P (Nucleus Sampling)"
|
574 |
+
)
|
575 |
+
# top_k = gr.Slider(
|
576 |
+
# minimum=0, maximum=200, value=0, step=5, # Allow Top-K=0 (disabled)
|
577 |
+
# label="Top-K (0 to disable)"
|
578 |
+
# )
|
579 |
+
with gr.Row():
|
580 |
+
# Dream specific algorithm choice
|
581 |
+
alg_strategy = gr.Radio(
|
582 |
+
choices=["entropy", "maskgit_plus", "topk_margin", "origin"],
|
583 |
+
value="entropy",
|
584 |
+
label="Algorithm (`alg`)"
|
585 |
+
)
|
586 |
+
alg_temp = gr.Slider(
|
587 |
+
minimum=0.0, maximum=1.0, value=0.1, step=0.01,
|
588 |
+
label="Algorithm Temp (`alg_temp`)"
|
589 |
+
)
|
590 |
+
with gr.Row():
|
591 |
+
visualization_delay = gr.Slider(
|
592 |
+
minimum=0.0, maximum=0.5, value=0.03, step=0.01, # Faster default delay
|
593 |
+
label="Visualization Delay (seconds)"
|
594 |
+
)
|
595 |
|
596 |
# Clear button
|
597 |
clear_btn = gr.Button("Clear Conversation")
|
598 |
|
599 |
+
# --- Helper Functions for UI ---
|
600 |
def add_message_to_history(history, message, response):
|
601 |
"""Add a message pair to the history state"""
|
602 |
+
history.append([message, response])
|
603 |
+
return history
|
604 |
|
605 |
+
def user_message_action(message, history):
|
606 |
+
"""Handles user sending a message: updates history, clears input."""
|
607 |
if not message or message.strip() == "":
|
608 |
+
return history, history, "", [], "" # Return empty vis, empty response
|
609 |
+
|
610 |
+
# Add user message with None response placeholder
|
611 |
+
history = add_message_to_history(history, message, None)
|
612 |
+
# Return updated history for chatbot display, clear input box
|
613 |
+
return history, history, "", [], "" # Clear vis and response text state too
|
614 |
+
|
615 |
+
def bot_response_generator(
|
616 |
+
history, gen_length, steps, constraints_str, delay,
|
617 |
+
temperature, top_p, # top_k,
|
618 |
+
alg, alg_temp
|
619 |
+
):
|
620 |
+
"""Generates bot response and yields visualization states."""
|
621 |
+
if not history or history[-1][1] is not None: # Check if last message already has a response
|
622 |
+
print("History empty or last message already processed.")
|
623 |
+
yield history, [], "" # Yield empty state if no work to do
|
|
|
|
|
|
|
|
|
|
|
624 |
return
|
625 |
|
|
|
626 |
last_user_message = history[-1][0]
|
627 |
+
print(f"Generating response for: {last_user_message}")
|
|
|
628 |
|
|
|
629 |
try:
|
630 |
+
# Format history for the model (excluding the last None response)
|
631 |
+
messages = format_chat_history(history[:-1])
|
632 |
+
# Add the current user message
|
633 |
+
messages.append({"role": "user", "content": last_user_message})
|
634 |
+
|
635 |
+
# Parse constraints into token IDs
|
636 |
parsed_constraints = parse_constraints(constraints_str)
|
637 |
+
print(f"Parsed constraints: {parsed_constraints}")
|
|
|
|
|
|
|
638 |
|
639 |
+
|
640 |
+
final_text = "" # Initialize final_text
|
641 |
+
|
642 |
+
# Use the generator function
|
643 |
+
response_generator = generate_response_with_visualization_dream(
|
644 |
+
messages,
|
645 |
+
gen_length=gen_length,
|
646 |
steps=steps,
|
647 |
constraints=parsed_constraints,
|
648 |
+
temperature=temperature,
|
649 |
+
top_p=top_p if top_p > 0 else None, # Pass None if 0
|
650 |
+
top_k=None, # Pass None if 0 top_k if top_k > 0 else None,
|
651 |
alg=alg,
|
652 |
+
alg_temp=alg_temp if alg_temp > 0 else None, # Pass None if 0
|
653 |
+
yield_intermediate=True
|
654 |
+
)
|
655 |
+
|
656 |
+
# Iterate through the yielded visualization states
|
657 |
+
last_state = None
|
658 |
+
for vis_state in response_generator:
|
659 |
+
last_state = vis_state
|
660 |
+
# Update chatbot with placeholder during generation
|
661 |
+
history[-1][1] = "..." # Indicate thinking
|
662 |
+
yield history, vis_state, "..." # Yield history, current vis state, placeholder text
|
663 |
+
if delay > 0:
|
664 |
+
time.sleep(delay)
|
665 |
+
|
666 |
+
# --- Generation Finished ---
|
667 |
+
# Extract final text (needs to be done *after* the generator is exhausted)
|
668 |
+
# Re-run the generation without yielding intermediates to get the final text reliably
|
669 |
+
# (Or modify the generator to return it, but this is simpler for now)
|
670 |
+
# TODO: Optimize this - maybe the generator could return the final text at the end?
|
671 |
+
|
672 |
+
print("Re-generating final text (non-streaming)...")
|
673 |
+
final_vis_states, final_text = generate_response_with_visualization_dream(
|
674 |
+
messages, gen_length, steps, parsed_constraints, temperature,
|
675 |
+
top_p if top_p > 0 else None, None, #top_k if top_k > 0 else None,
|
676 |
+
alg, alg_temp if alg_temp > 0 else None,
|
677 |
+
yield_intermediate=False # Get final result only
|
678 |
+
)
|
679 |
+
print(f"Final Text: {final_text}")
|
680 |
+
|
681 |
+
|
682 |
+
# Update the history with the actual final response
|
683 |
+
history[-1][1] = final_text.strip() if final_text else "[No response]"
|
684 |
+
|
685 |
+
# Yield the final state one last time
|
686 |
+
yield history, final_vis_states[-1] if final_vis_states else [], final_text.strip()
|
687 |
+
|
688 |
except Exception as e:
|
|
|
689 |
import traceback
|
690 |
+
print(f"Error during generation: {e}")
|
691 |
traceback.print_exc()
|
692 |
+
error_msg = f"Error: {str(e)}"
|
693 |
+
history[-1][1] = error_msg # Show error in chat
|
694 |
+
# Show error in visualization (red text)
|
695 |
+
error_vis = [(error_msg, "#FF0000")]
|
696 |
+
yield history, error_vis, error_msg
|
697 |
+
|
698 |
+
|
699 |
+
def clear_conversation_action():
|
700 |
+
"""Clears chat history, visualization, and response text."""
|
701 |
+
return [], [], "", [] # History, Chatbot UI, Response Text, Visualization
|
702 |
+
|
703 |
+
|
704 |
+
# --- Event Wiring ---
|
705 |
+
|
706 |
+
# 1. User Submits Message (Textbox Enter or Button Click)
|
707 |
+
submit_triggers = [user_input.submit, send_btn.click]
|
708 |
+
for trigger in submit_triggers:
|
709 |
+
trigger.then(
|
710 |
+
fn=user_message_action,
|
711 |
+
inputs=[user_input, chat_history],
|
712 |
+
outputs=[chat_history, chatbot_ui, user_input, output_vis, current_response_text], # Update history state, chatbot UI, clear input, clear vis, clear response state
|
713 |
+
queue=True # Enable queue for handling multiple users
|
714 |
+
).then(
|
715 |
+
# 2. Trigger Bot Response Generation (Generator Function)
|
716 |
+
fn=bot_response_generator,
|
717 |
+
inputs=[
|
718 |
+
chat_history, gen_length, steps, constraints_input, visualization_delay,
|
719 |
+
temperature, top_p, # top_k,
|
720 |
+
alg_strategy, alg_temp
|
721 |
+
],
|
722 |
+
outputs=[chatbot_ui, output_vis, current_response_text] # Stream updates to chatbot, visualization, and store final text
|
723 |
+
)
|
724 |
|
725 |
+
# Clear Button Action
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
726 |
clear_btn.click(
|
727 |
+
fn=clear_conversation_action,
|
728 |
inputs=[],
|
729 |
+
outputs=[chat_history, chatbot_ui, current_response_text, output_vis],
|
730 |
+
queue=False # No need to queue clear action
|
731 |
)
|
732 |
|
733 |
return demo
|
734 |
|
735 |
+
# --- Launch ---
|
736 |
if __name__ == "__main__":
|
737 |
+
# Make sure the necessary Dream model files (modeling_dream.py, configuration_dream.py etc.)
|
738 |
+
# are in the same directory or accessible in the Python path.
|
739 |
+
# Also ensure 'generation_utils.py' is available if needed by the model loading/config.
|
740 |
+
# Check if 'modeling_dream.py' exists before launching
|
741 |
+
import os
|
742 |
+
if not os.path.exists("modeling_dream.py") or not os.path.exists("configuration_dream.py"):
|
743 |
+
print("\nERROR: Could not find 'modeling_dream.py' and/or 'configuration_dream.py'.")
|
744 |
+
print("Please make sure these files (from the 'dream_model.txt' source) are in the same directory as this script.")
|
745 |
+
print("You might need to extract them from the provided text file.")
|
746 |
+
# exit() # Optional: stop execution if files are missing
|
747 |
+
|
748 |
+
print("Creating Gradio Demo...")
|
749 |
demo = create_chatbot_demo()
|
750 |
+
print("Launching Gradio Demo...")
|
751 |
+
# Use queueing for better user experience with potentially long generation times
|
752 |
+
demo.queue().launch(share=True, debug=True) # Enable debug for more detailed logs
|