Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,57 +2,62 @@
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
import gradio as gr
|
| 5 |
-
import spaces
|
| 6 |
import torch.nn.functional as F
|
| 7 |
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
| 8 |
import time
|
| 9 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Determine device
|
| 12 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 13 |
print(f"Using device: {device}")
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
print(f"Loading tokenizer from {model_path}...")
|
| 19 |
-
# Load configuration first to get special token IDs
|
| 20 |
-
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
| 21 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 22 |
-
|
| 23 |
-
|
| 24 |
model = AutoModel.from_pretrained(
|
| 25 |
model_path,
|
| 26 |
-
torch_dtype=torch.bfloat16,
|
| 27 |
trust_remote_code=True
|
| 28 |
-
)
|
| 29 |
-
|
|
|
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
#
|
| 33 |
MASK_TOKEN = tokenizer.mask_token
|
| 34 |
-
MASK_ID = config.mask_token_id
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
if
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
raise ValueError("Could not determine PAD_ID from model config or tokenizer.")
|
| 46 |
-
|
| 47 |
|
| 48 |
# --- Helper Functions ---
|
| 49 |
|
| 50 |
-
def parse_constraints(constraints_text,
|
| 51 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
constraints = {}
|
| 53 |
-
processed_constraints_tokens = {}
|
| 54 |
if not constraints_text:
|
| 55 |
-
return constraints
|
| 56 |
|
| 57 |
parts = constraints_text.split(',')
|
| 58 |
for part in parts:
|
|
@@ -60,270 +65,292 @@ def parse_constraints(constraints_text, tokenizer):
|
|
| 60 |
continue
|
| 61 |
pos_str, word = part.split(':', 1)
|
| 62 |
try:
|
|
|
|
| 63 |
pos = int(pos_str.strip())
|
| 64 |
word = word.strip()
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
tokens = tokenizer.encode(prefix + word, add_special_tokens=False)
|
| 72 |
-
for i, token_id in enumerate(tokens):
|
| 73 |
-
# Prevent overwriting multi-token constraints partially
|
| 74 |
-
if pos + i not in processed_constraints_tokens:
|
| 75 |
-
processed_constraints_tokens[pos + i] = token_id
|
| 76 |
except ValueError:
|
| 77 |
-
continue
|
| 78 |
except Exception as e:
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
# Sort by position for consistent application
|
| 83 |
-
processed_constraints_tokens = dict(sorted(processed_constraints_tokens.items()))
|
| 84 |
-
print(f"Parsed Constraints (Word): {constraints}")
|
| 85 |
-
print(f"Parsed Constraints (Tokens): {processed_constraints_tokens}")
|
| 86 |
-
return constraints, processed_constraints_tokens
|
| 87 |
|
| 88 |
-
def format_chat_history(history):
|
| 89 |
"""
|
| 90 |
-
Format chat history for the Dream model
|
| 91 |
|
| 92 |
Args:
|
| 93 |
-
history: List of [user_message, assistant_message] pairs
|
|
|
|
| 94 |
|
| 95 |
Returns:
|
| 96 |
-
Formatted list of message dictionaries for
|
| 97 |
"""
|
| 98 |
messages = []
|
| 99 |
-
#
|
| 100 |
-
|
| 101 |
-
|
|
|
|
| 102 |
|
| 103 |
for user_msg, assistant_msg in history:
|
| 104 |
-
if user_msg
|
| 105 |
messages.append({"role": "user", "content": user_msg})
|
| 106 |
-
|
|
|
|
| 107 |
messages.append({"role": "assistant", "content": assistant_msg})
|
| 108 |
|
| 109 |
return messages
|
| 110 |
|
| 111 |
-
# --- Core Generation Logic with Visualization
|
| 112 |
-
|
| 113 |
-
@spaces.GPU
|
| 114 |
-
def
|
| 115 |
-
|
| 116 |
-
gen_length
|
| 117 |
-
steps
|
| 118 |
-
constraints_text
|
| 119 |
-
temperature
|
| 120 |
-
top_p
|
| 121 |
-
top_k
|
| 122 |
-
alg
|
| 123 |
-
alg_temp
|
| 124 |
-
visualization_delay
|
| 125 |
-
|
| 126 |
-
model=model,
|
| 127 |
-
device=device,
|
| 128 |
-
MASK_ID=MASK_ID,
|
| 129 |
-
EOS_ID=EOS_ID,
|
| 130 |
-
PAD_ID=PAD_ID
|
| 131 |
-
):
|
| 132 |
"""
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
"""
|
| 135 |
-
visualization_states = []
|
| 136 |
-
final_text = ""
|
| 137 |
-
# Use a list to hold previous_x, allowing nonlocal modification
|
| 138 |
-
# Initialize with None, it will be set after the first hook call
|
| 139 |
-
shared_state = {'previous_x': None}
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
|
|
|
| 142 |
try:
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
# The template adds roles and special tokens like <|im_start|> etc.
|
| 149 |
-
chat_input_text = tokenizer.apply_chat_template(
|
| 150 |
-
messages,
|
| 151 |
-
add_generation_prompt=True, # Adds the prompt for the assistant's turn
|
| 152 |
-
tokenize=False
|
| 153 |
)
|
| 154 |
-
|
| 155 |
-
# Tokenize the full templated chat string
|
| 156 |
-
inputs = tokenizer(chat_input_text, return_tensors="pt", return_dict=True)
|
| 157 |
input_ids = inputs.input_ids.to(device)
|
| 158 |
-
attention_mask = inputs.attention_mask.to(device)
|
| 159 |
-
|
| 160 |
prompt_length = input_ids.shape[1]
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
#
|
| 182 |
-
|
| 183 |
-
#
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
#
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
# Decode token, handling special tokens we want to hide
|
| 217 |
-
token_str = ""
|
| 218 |
-
color = "#444444" # Default: Dark Gray (Mask)
|
| 219 |
-
token_str_raw = tokenizer.decode([current_token_id], skip_special_tokens=False) # Keep special tokens for ID check
|
| 220 |
-
|
| 221 |
-
if current_token_id == MASK_ID:
|
| 222 |
-
token_str = MASK_TOKEN
|
| 223 |
-
color = "#444444" # Dark gray
|
| 224 |
-
elif current_token_id == EOS_ID or current_token_id == PAD_ID:
|
| 225 |
-
token_str = "" # Hide EOS/PAD visually
|
| 226 |
-
color = "#DDDDDD" # Use a light gray or make transparent if possible
|
| 227 |
-
else:
|
| 228 |
-
# Decode without special tokens for display if it's not MASK/EOS/PAD
|
| 229 |
-
token_str = tokenizer.decode([current_token_id], skip_special_tokens=True).strip()
|
| 230 |
-
if not token_str: token_str = token_str_raw # Fallback if strip removes everything (e.g., space)
|
| 231 |
-
|
| 232 |
-
if prev_token_id == MASK_ID:
|
| 233 |
-
# Newly revealed in this step
|
| 234 |
-
color = "#66CC66" # Light green (Simplified from confidence levels)
|
| 235 |
-
else:
|
| 236 |
-
# Previously revealed
|
| 237 |
-
color = "#6699CC" # Light blue
|
| 238 |
-
|
| 239 |
-
current_state_vis.append((token_str if token_str else " ", color)) # Ensure non-empty tuple element
|
| 240 |
-
|
| 241 |
-
visualization_states.append(current_state_vis)
|
| 242 |
-
shared_state['previous_x'] = current_x_hook.clone() # Update previous_x for the next step
|
| 243 |
|
| 244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
-
# --- 4. Run Diffusion Generation ---
|
| 247 |
-
print("Starting diffusion generation...")
|
| 248 |
-
start_time = time.time()
|
| 249 |
output = model.diffusion_generate(
|
| 250 |
-
input_ids
|
| 251 |
-
|
| 252 |
-
attention_mask=attention_mask, # Provide the full attention mask
|
| 253 |
max_new_tokens=gen_length,
|
| 254 |
output_history=False, # We capture history via the hook
|
| 255 |
return_dict_in_generate=True,
|
| 256 |
steps=steps,
|
| 257 |
temperature=temperature,
|
| 258 |
-
top_p=top_p,
|
| 259 |
-
top_k=top_k,
|
| 260 |
alg=alg,
|
| 261 |
-
alg_temp=alg_temp if alg
|
| 262 |
-
|
| 263 |
-
generation_tokens_hook_func=generation_tokens_hook_func,
|
| 264 |
-
# Ensure the initial masked sequence `x` is used correctly if needed by internal logic
|
| 265 |
-
# Depending on the exact implementation of diffusion_generate, passing x directly might be needed
|
| 266 |
-
# Check Dream's generation_utils if issues arise. For now, assume it uses input_ids + max_new_tokens
|
| 267 |
)
|
| 268 |
end_time = time.time()
|
| 269 |
-
print(f"
|
| 270 |
|
| 271 |
-
# ---
|
| 272 |
-
# The hook has already built visualization_states
|
| 273 |
final_sequence = output.sequences[0]
|
| 274 |
-
|
| 275 |
-
# Decode the generated part, skipping special tokens for the final text output
|
| 276 |
response_tokens = final_sequence[prompt_length:]
|
| 277 |
-
# Filter out PAD tokens before final decode, keep EOS if needed conceptually, but skip for clean text
|
| 278 |
-
response_tokens_cleaned = [tok for tok in response_tokens if tok != PAD_ID] # Keep EOS initially if needed
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
|
|
|
| 284 |
).strip()
|
| 285 |
|
| 286 |
-
#
|
| 287 |
-
|
| 288 |
-
# print(f"Final Decoded Text: {final_text}")
|
| 289 |
|
| 290 |
except Exception as e:
|
| 291 |
-
print(f"Error during generation: {e}")
|
| 292 |
import traceback
|
| 293 |
traceback.print_exc()
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
|
|
|
|
|
|
|
| 303 |
|
| 304 |
-
|
|
|
|
| 305 |
|
| 306 |
-
#
|
|
|
|
| 307 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
css = '''
|
| 309 |
.category-legend{display:none}
|
| 310 |
-
button{height: 60px}
|
| 311 |
-
.token-text { white-space: pre; } /* Preserve spaces in tokens */
|
| 312 |
-
footer { display: none !important; visibility: hidden !important; }
|
| 313 |
'''
|
| 314 |
def create_chatbot_demo():
|
| 315 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 316 |
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
|
| 317 |
gr.Markdown(
|
| 318 |
"[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] "
|
| 319 |
-
"[[Blog
|
| 320 |
-
"(Note: Visualization shows token reveal steps, colors indicate status: Gray=Masked, Green=Newly Revealed, Blue=Previously Revealed)"
|
| 321 |
)
|
| 322 |
|
| 323 |
# STATE MANAGEMENT
|
| 324 |
chat_history = gr.State([])
|
| 325 |
-
# Store constraints parsed into token IDs
|
| 326 |
-
parsed_constraints_state = gr.State({})
|
| 327 |
|
| 328 |
# UI COMPONENTS
|
| 329 |
with gr.Row():
|
|
@@ -331,8 +358,9 @@ def create_chatbot_demo():
|
|
| 331 |
chatbot_ui = gr.Chatbot(
|
| 332 |
label="Conversation",
|
| 333 |
height=500,
|
| 334 |
-
|
| 335 |
-
|
|
|
|
| 336 |
|
| 337 |
# Message input
|
| 338 |
with gr.Group():
|
|
@@ -340,217 +368,129 @@ def create_chatbot_demo():
|
|
| 340 |
user_input = gr.Textbox(
|
| 341 |
label="Your Message",
|
| 342 |
placeholder="Type your message here...",
|
|
|
|
|
|
|
| 343 |
show_label=False,
|
| 344 |
-
|
| 345 |
)
|
| 346 |
-
send_btn = gr.Button("Send", scale=1)
|
|
|
|
| 347 |
|
| 348 |
constraints_input = gr.Textbox(
|
| 349 |
-
label="Word Constraints (
|
| 350 |
-
info="Place
|
| 351 |
-
placeholder="0:
|
| 352 |
value=""
|
| 353 |
)
|
| 354 |
with gr.Column(scale=2):
|
| 355 |
output_vis = gr.HighlightedText(
|
| 356 |
label="Denoising Process Visualization",
|
| 357 |
combine_adjacent=False,
|
| 358 |
-
show_legend=False, # Legend
|
|
|
|
| 359 |
)
|
| 360 |
|
| 361 |
# Advanced generation settings
|
| 362 |
with gr.Accordion("Generation Settings", open=False):
|
| 363 |
with gr.Row():
|
| 364 |
gen_length = gr.Slider(
|
| 365 |
-
minimum=16, maximum=512, value=128, step=8,
|
| 366 |
label="Max New Tokens"
|
| 367 |
)
|
| 368 |
steps = gr.Slider(
|
| 369 |
-
minimum=8, maximum=512, value=128, step=
|
| 370 |
-
label="
|
| 371 |
)
|
| 372 |
with gr.Row():
|
| 373 |
temperature = gr.Slider(
|
| 374 |
-
minimum=0.0, maximum=1.0, value=0.
|
| 375 |
label="Temperature"
|
| 376 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
top_p = gr.Slider(
|
| 378 |
-
minimum=0.
|
| 379 |
-
label="Top-P"
|
| 380 |
)
|
| 381 |
top_k = gr.Slider(
|
| 382 |
minimum=0, maximum=200, value=0, step=5,
|
| 383 |
label="Top-K (0=disabled)"
|
| 384 |
)
|
|
|
|
| 385 |
with gr.Row():
|
| 386 |
-
|
| 387 |
choices=['origin', 'maskgit_plus', 'topk_margin', 'entropy'],
|
| 388 |
-
value='entropy',
|
| 389 |
-
label="
|
| 390 |
-
|
| 391 |
-
alg_temp = gr.Slider(
|
| 392 |
-
minimum=0.0, maximum=1.0, value=0.0, step=0.05,
|
| 393 |
-
label="Algorithm Temp (`alg_temp`, adds randomness to confidence-based `alg`)"
|
| 394 |
-
)
|
| 395 |
|
| 396 |
with gr.Row():
|
| 397 |
visualization_delay = gr.Slider(
|
| 398 |
-
minimum=0.0, maximum=0.5, value=0.02, step=0.01,
|
| 399 |
label="Visualization Delay (seconds)"
|
| 400 |
)
|
| 401 |
|
| 402 |
# Clear button
|
| 403 |
clear_btn = gr.Button("Clear Conversation")
|
| 404 |
|
| 405 |
-
#
|
| 406 |
-
|
| 407 |
-
"""Add a message pair to the history and return the updated history"""
|
| 408 |
-
# Ensure history is a list
|
| 409 |
-
if not isinstance(history, list):
|
| 410 |
-
history = []
|
| 411 |
-
history.append([message, response])
|
| 412 |
-
return history
|
| 413 |
-
|
| 414 |
-
def user_message_submitted(message, history):
|
| 415 |
-
"""Process a submitted user message"""
|
| 416 |
-
if not message.strip():
|
| 417 |
-
return history, history, "", [] # No change if empty
|
| 418 |
-
|
| 419 |
-
# Add user message (response is None for now)
|
| 420 |
-
history = add_message(history, message, None)
|
| 421 |
-
|
| 422 |
-
# Return updated history for display, clear input box
|
| 423 |
-
return history, history, "", [] # history, chatbot_ui, user_input, output_vis
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
def bot_response_stream(
|
| 427 |
-
history, # Current chat history (list of lists)
|
| 428 |
-
gen_length, steps, constraints, # Generation settings
|
| 429 |
-
temperature, top_p, top_k, alg, alg_temp, # Sampling settings
|
| 430 |
-
delay # Visualization delay
|
| 431 |
-
):
|
| 432 |
-
"""Generate bot response and stream visualization states"""
|
| 433 |
-
if not history or history[-1][1] is not None: # Check if history is present and last response isn't already set
|
| 434 |
-
print("Skipping bot response generation: No new user message.")
|
| 435 |
-
# Yield empty state if needed to prevent errors downstream
|
| 436 |
-
# Ensure history is returned correctly if nothing happens
|
| 437 |
-
yield history, [], "Internal Error: No user message found."
|
| 438 |
-
return
|
| 439 |
-
|
| 440 |
-
# Format messages for the model
|
| 441 |
-
# Exclude the last entry as it only contains the user message
|
| 442 |
-
messages_for_model = format_chat_history(history) # Already includes system prompt
|
| 443 |
-
|
| 444 |
-
print("\n--- Generating Bot Response ---")
|
| 445 |
-
print(f"History: {history}")
|
| 446 |
-
print(f"Messages for model: {messages_for_model}")
|
| 447 |
-
print(f"Constraints text: '{constraints}'")
|
| 448 |
-
print(f"Gen length: {gen_length}, Steps: {steps}, Temp: {temperature}, Top-P: {top_p}, Top-K: {top_k}, Alg: {alg}, Alg Temp: {alg_temp}")
|
| 449 |
-
|
| 450 |
-
# Call the generation function
|
| 451 |
-
vis_states, response_text = generate_response_with_visualization(
|
| 452 |
-
messages_for_model,
|
| 453 |
-
gen_length=gen_length,
|
| 454 |
-
steps=steps,
|
| 455 |
-
constraints_text=constraints,
|
| 456 |
-
temperature=temperature,
|
| 457 |
-
top_p=top_p if top_p < 1.0 else None, # None disables top-p
|
| 458 |
-
top_k=top_k if top_k > 0 else None, # None disables top-k
|
| 459 |
-
alg=alg,
|
| 460 |
-
alg_temp=alg_temp,
|
| 461 |
-
visualization_delay=delay,
|
| 462 |
-
# Pass other necessary args like tokenizer, model if not global
|
| 463 |
-
)
|
| 464 |
-
|
| 465 |
-
print(f"Generated response text: '{response_text}'")
|
| 466 |
-
print(f"Number of visualization states: {len(vis_states)}")
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
# Update the history with the final response
|
| 470 |
-
# Make sure history is mutable if needed or reassign
|
| 471 |
-
if history:
|
| 472 |
-
history[-1][1] = response_text
|
| 473 |
-
else:
|
| 474 |
-
print("Warning: History was empty when trying to update response.")
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
# Stream the visualization states
|
| 478 |
-
if not vis_states:
|
| 479 |
-
print("Warning: No visualization states were generated.")
|
| 480 |
-
# Yield something to prevent downstream errors
|
| 481 |
-
yield history, [("Error: No visualization.", "red")], response_text
|
| 482 |
-
return
|
| 483 |
|
| 484 |
-
|
| 485 |
-
# yield history, vis_states[0], response_text
|
| 486 |
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
|
|
|
|
|
|
| 490 |
|
| 491 |
-
#
|
| 492 |
-
|
|
|
|
|
|
|
| 493 |
|
| 494 |
|
| 495 |
def clear_conversation():
|
| 496 |
-
"""
|
| 497 |
-
return [], [], "", []
|
| 498 |
-
|
| 499 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 500 |
|
| 501 |
-
# Clear
|
| 502 |
clear_btn.click(
|
| 503 |
-
|
| 504 |
inputs=[],
|
| 505 |
outputs=[chat_history, chatbot_ui, user_input, output_vis]
|
| 506 |
)
|
| 507 |
|
| 508 |
-
# User message submission flow (2-step using .then)
|
| 509 |
-
# 1. User submits message -> Update history and chatbot UI immediately
|
| 510 |
-
submit_action = user_input.submit(
|
| 511 |
-
fn=user_message_submitted,
|
| 512 |
-
inputs=[user_input, chat_history],
|
| 513 |
-
outputs=[chat_history, chatbot_ui, user_input, output_vis] # Update chatbot, clear input
|
| 514 |
-
)
|
| 515 |
-
|
| 516 |
-
# Connect send button to the same function
|
| 517 |
-
send_action = send_btn.click(
|
| 518 |
-
fn=user_message_submitted,
|
| 519 |
-
inputs=[user_input, chat_history],
|
| 520 |
-
outputs=[chat_history, chatbot_ui, user_input, output_vis]
|
| 521 |
-
)
|
| 522 |
-
|
| 523 |
-
# 2. After UI update -> Trigger bot response generation and streaming
|
| 524 |
-
# Use the updated chat_history from the first step
|
| 525 |
-
submit_action.then(
|
| 526 |
-
fn=bot_response_stream,
|
| 527 |
-
inputs=[
|
| 528 |
-
chat_history, gen_length, steps, constraints_input,
|
| 529 |
-
temperature, top_p, top_k, alg, alg_temp,
|
| 530 |
-
visualization_delay
|
| 531 |
-
],
|
| 532 |
-
outputs=[chatbot_ui, output_vis, user_input] # Update chatbot, visualization. Keep user_input as output to potentially display final text/error? (Check Gradio docs for Textbox output binding on yield) Let's remove user_input from outputs here.
|
| 533 |
-
)
|
| 534 |
-
|
| 535 |
-
send_action.then(
|
| 536 |
-
fn=bot_response_stream,
|
| 537 |
-
inputs=[
|
| 538 |
-
chat_history, gen_length, steps, constraints_input,
|
| 539 |
-
temperature, top_p, top_k, alg, alg_temp,
|
| 540 |
-
visualization_delay
|
| 541 |
-
],
|
| 542 |
-
outputs=[chatbot_ui, output_vis] # Update chatbot and visualization
|
| 543 |
-
)
|
| 544 |
-
|
| 545 |
-
# Clear input after send/submit (already handled in user_message_submitted)
|
| 546 |
-
# submit_action.then(lambda: "", outputs=user_input)
|
| 547 |
-
# send_action.then(lambda: "", outputs=user_input)
|
| 548 |
-
|
| 549 |
-
|
| 550 |
return demo
|
| 551 |
|
| 552 |
-
# --- Launch
|
| 553 |
if __name__ == "__main__":
|
| 554 |
demo = create_chatbot_demo()
|
| 555 |
-
#
|
| 556 |
-
demo.queue().launch(debug=True, share=True)
|
|
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
import gradio as gr
|
| 5 |
+
import spaces # Ensure spaces is installed if needed for GPU decorator
|
| 6 |
import torch.nn.functional as F
|
| 7 |
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
| 8 |
import time
|
| 9 |
+
import re
|
| 10 |
+
from typing import List, Dict, Tuple, Optional
|
| 11 |
+
|
| 12 |
+
# Load model configuration to get special token IDs
|
| 13 |
+
config = AutoConfig.from_pretrained("Dream-org/Dream-v0-Instruct-7B", trust_remote_code=True)
|
| 14 |
+
# Use AutoModel for the base model loading, relying on trust_remote_code=True
|
| 15 |
+
# for the custom DreamModel class and generation mixin.
|
| 16 |
+
model_path = "Dream-org/Dream-v0-Instruct-7B"
|
| 17 |
|
| 18 |
# Determine device
|
| 19 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 20 |
print(f"Using device: {device}")
|
| 21 |
|
| 22 |
+
# Load model and tokenizer
|
| 23 |
+
print("Loading tokenizer...")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 25 |
+
print("Loading model...")
|
| 26 |
+
# Ensure torch_dtype is set appropriately for your hardware if needed
|
| 27 |
model = AutoModel.from_pretrained(
|
| 28 |
model_path,
|
| 29 |
+
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32, # Use bfloat16 only on CUDA
|
| 30 |
trust_remote_code=True
|
| 31 |
+
)
|
| 32 |
+
model = model.to(device).eval()
|
| 33 |
+
print("Model loaded.")
|
| 34 |
|
| 35 |
+
# Constants from Dream's config/tokenizer
|
| 36 |
+
# Use attributes from loaded config/tokenizer objects
|
| 37 |
MASK_TOKEN = tokenizer.mask_token
|
| 38 |
+
MASK_ID = config.mask_token_id
|
| 39 |
+
PAD_ID = config.pad_token_id
|
| 40 |
+
EOS_ID = config.eos_token_id
|
| 41 |
+
# Make sure EOS_ID and PAD_ID are handled correctly; Dream uses the same ID for both
|
| 42 |
+
SPECIAL_TOKEN_IDS = {PAD_ID, EOS_ID, MASK_ID}
|
| 43 |
+
# Add other special tokens defined in tokenizer_config.json if needed for hiding
|
| 44 |
+
# Get IDs for im_start, im_end etc. if they should also be hidden/handled specially
|
| 45 |
+
IM_START_ID = tokenizer.convert_tokens_to_ids("<|im_start|>")
|
| 46 |
+
IM_END_ID = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
| 47 |
+
SPECIAL_TOKEN_IDS.add(IM_START_ID)
|
| 48 |
+
SPECIAL_TOKEN_IDS.add(IM_END_ID)
|
|
|
|
|
|
|
| 49 |
|
| 50 |
# --- Helper Functions ---
|
| 51 |
|
| 52 |
+
def parse_constraints(constraints_text: str) -> Dict[int, List[int]]:
|
| 53 |
+
"""
|
| 54 |
+
Parse constraints in format: 'position:word, position:word, ...'
|
| 55 |
+
Returns a dictionary mapping the starting position (0-indexed from the start
|
| 56 |
+
of the *generated* sequence) to a list of token IDs for the constraint word.
|
| 57 |
+
"""
|
| 58 |
constraints = {}
|
|
|
|
| 59 |
if not constraints_text:
|
| 60 |
+
return constraints
|
| 61 |
|
| 62 |
parts = constraints_text.split(',')
|
| 63 |
for part in parts:
|
|
|
|
| 65 |
continue
|
| 66 |
pos_str, word = part.split(':', 1)
|
| 67 |
try:
|
| 68 |
+
# Position relative to the start of the *generation*
|
| 69 |
pos = int(pos_str.strip())
|
| 70 |
word = word.strip()
|
| 71 |
+
# Tokenize the word - add leading space if not BOS? Dream handles spaces.
|
| 72 |
+
# Check Dream tokenizer behavior for spaces. Assuming standard behavior:
|
| 73 |
+
token_ids = tokenizer.encode(" " + word if pos > 0 else word, add_special_tokens=False)
|
| 74 |
+
|
| 75 |
+
if token_ids and pos >= 0:
|
| 76 |
+
constraints[pos] = token_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
except ValueError:
|
| 78 |
+
continue # Ignore malformed constraint parts
|
| 79 |
except Exception as e:
|
| 80 |
+
print(f"Warning: Error processing constraint '{part}': {e}")
|
| 81 |
+
continue
|
| 82 |
+
|
| 83 |
+
return constraints
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
def format_chat_history(history: List[List[Optional[str]]]) -> List[Dict[str, str]]:
|
| 87 |
"""
|
| 88 |
+
Format chat history for the Dream model's chat template.
|
| 89 |
|
| 90 |
Args:
|
| 91 |
+
history: List of [user_message, assistant_message] pairs.
|
| 92 |
+
The last assistant_message might be None.
|
| 93 |
|
| 94 |
Returns:
|
| 95 |
+
Formatted list of message dictionaries for tokenizer.apply_chat_template.
|
| 96 |
"""
|
| 97 |
messages = []
|
| 98 |
+
# Check if the first message is a system prompt, handle accordingly if needed
|
| 99 |
+
# Based on Dream's examples, the template adds a default system prompt if none exists.
|
| 100 |
+
# If history starts with System, it should be handled by the template.
|
| 101 |
+
# Let's assume the template handles the system prompt correctly.
|
| 102 |
|
| 103 |
for user_msg, assistant_msg in history:
|
| 104 |
+
if user_msg: # Defensive check
|
| 105 |
messages.append({"role": "user", "content": user_msg})
|
| 106 |
+
# Add assistant message only if it exists (it won't for the last turn before generation)
|
| 107 |
+
if assistant_msg:
|
| 108 |
messages.append({"role": "assistant", "content": assistant_msg})
|
| 109 |
|
| 110 |
return messages
|
| 111 |
|
| 112 |
+
# --- Core Generation Logic with Live Visualization ---
|
| 113 |
+
|
| 114 |
+
@spaces.GPU # Decorator for Hugging Face Spaces GPU usage
|
| 115 |
+
def generate_dream_response(
|
| 116 |
+
history: List[List[Optional[str]]],
|
| 117 |
+
gen_length: int,
|
| 118 |
+
steps: int,
|
| 119 |
+
constraints_text: str,
|
| 120 |
+
temperature: float,
|
| 121 |
+
top_p: Optional[float],
|
| 122 |
+
top_k: Optional[int],
|
| 123 |
+
alg: str,
|
| 124 |
+
alg_temp: Optional[float],
|
| 125 |
+
visualization_delay: float
|
| 126 |
+
) -> List[Tuple[str, str]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
"""
|
| 128 |
+
Generates text using the Dream model and yields visualization states live.
|
| 129 |
+
|
| 130 |
+
Args:
|
| 131 |
+
history: Chat history.
|
| 132 |
+
gen_length: Max new tokens to generate.
|
| 133 |
+
steps: Number of diffusion steps.
|
| 134 |
+
constraints_text: User-provided constraints string.
|
| 135 |
+
temperature: Sampling temperature.
|
| 136 |
+
top_p: Top-p sampling nucleus.
|
| 137 |
+
top_k: Top-k sampling.
|
| 138 |
+
alg: Remasking algorithm ('origin', 'maskgit_plus', 'topk_margin', 'entropy').
|
| 139 |
+
alg_temp: Temperature for confidence-based algorithms.
|
| 140 |
+
visualization_delay: Delay between visualization steps.
|
| 141 |
+
|
| 142 |
+
Yields:
|
| 143 |
+
Tuple[List[List[Optional[str]]], List[Tuple[str, Optional[str]]], str]:
|
| 144 |
+
- Updated history
|
| 145 |
+
- Visualization data for HighlightedText
|
| 146 |
+
- Final response text (repeated in each yield)
|
| 147 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
+
if not history or not history[-1][0]:
|
| 150 |
+
# No user message to respond to
|
| 151 |
+
yield history, [("No input message found.", "red")], ""
|
| 152 |
+
return
|
| 153 |
+
|
| 154 |
+
# --- 1. Preparation ---
|
| 155 |
+
last_user_message = history[-1][0]
|
| 156 |
+
messages_for_template = format_chat_history(history) # Includes the latest user message
|
| 157 |
+
|
| 158 |
+
# Parse constraints relative to the *generated* sequence
|
| 159 |
+
parsed_constraints = parse_constraints(constraints_text) # Dict[rel_pos, List[token_id]]
|
| 160 |
|
| 161 |
+
# Prepare inputs using the chat template
|
| 162 |
try:
|
| 163 |
+
inputs = tokenizer.apply_chat_template(
|
| 164 |
+
messages_for_template,
|
| 165 |
+
return_tensors="pt",
|
| 166 |
+
return_dict=True,
|
| 167 |
+
add_generation_prompt=True # Important for instruct models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
)
|
|
|
|
|
|
|
|
|
|
| 169 |
input_ids = inputs.input_ids.to(device)
|
| 170 |
+
attention_mask = inputs.attention_mask.to(device)
|
|
|
|
| 171 |
prompt_length = input_ids.shape[1]
|
| 172 |
+
except Exception as e:
|
| 173 |
+
print(f"Error applying chat template: {e}")
|
| 174 |
+
yield history, [("Error preparing input.", "red")], ""
|
| 175 |
+
return
|
| 176 |
+
|
| 177 |
+
# Calculate total sequence length for the model
|
| 178 |
+
# Max length constraint from model config (e.g., 2048 for original Dream?)
|
| 179 |
+
# Let's use a reasonable default or allow configuration if needed.
|
| 180 |
+
# The provided code uses max_position_embeddings=131072, let's stick to user input + gen_length.
|
| 181 |
+
total_length = prompt_length + gen_length
|
| 182 |
+
|
| 183 |
+
# --- 2. Visualization Setup ---
|
| 184 |
+
# This list will store the token sequence (just the generated part) at each step
|
| 185 |
+
step_sequence_history: List[torch.Tensor] = []
|
| 186 |
+
previous_step_tokens = None # Keep track of the previous step's state
|
| 187 |
+
|
| 188 |
+
# Define the hook function *inside* this function to capture state
|
| 189 |
+
def live_visualization_hook(step: Optional[int], x: torch.Tensor, logits: Optional[torch.Tensor]) -> torch.Tensor:
|
| 190 |
+
nonlocal step_sequence_history, parsed_constraints, prompt_length
|
| 191 |
+
|
| 192 |
+
# --- Apply Constraints ---
|
| 193 |
+
# Constraints are applied *after* the model proposes tokens but *before* they are finalized for the step
|
| 194 |
+
# Note: The hook receives the state *before* the next model call in the next step,
|
| 195 |
+
# or the final state after the last step. Let's apply constraints consistently.
|
| 196 |
+
# The `diffusion_generate` calls the hook *after* updating x based on sampling.
|
| 197 |
+
current_x = x.clone() # Work on a copy
|
| 198 |
+
|
| 199 |
+
for rel_pos, word_token_ids in parsed_constraints.items():
|
| 200 |
+
abs_start_pos = prompt_length + rel_pos
|
| 201 |
+
abs_end_pos = abs_start_pos + len(word_token_ids)
|
| 202 |
+
|
| 203 |
+
# Ensure the constraint fits within the generation length
|
| 204 |
+
if abs_start_pos < total_length and abs_end_pos <= total_length:
|
| 205 |
+
try:
|
| 206 |
+
constraint_tensor = torch.tensor(word_token_ids, dtype=torch.long, device=current_x.device)
|
| 207 |
+
# Force the constraint tokens onto the sequence
|
| 208 |
+
current_x[0, abs_start_pos:abs_end_pos] = constraint_tensor
|
| 209 |
+
except IndexError:
|
| 210 |
+
print(f"Warning: Constraint at {rel_pos} ('{tokenizer.decode(word_token_ids)}') goes out of bounds.")
|
| 211 |
+
except Exception as e:
|
| 212 |
+
print(f"Warning: Failed to apply constraint at {rel_pos}: {e}")
|
| 213 |
+
|
| 214 |
+
# Store the state *after* constraints for visualization
|
| 215 |
+
# We only need the generated part
|
| 216 |
+
generated_part = current_x[0, prompt_length:].clone().cpu() # Move to CPU to save GPU memory
|
| 217 |
+
step_sequence_history.append(generated_part)
|
| 218 |
+
|
| 219 |
+
# Return the (potentially modified by constraints) tensor x
|
| 220 |
+
return current_x # Pass the constrained version to the next step
|
| 221 |
+
|
| 222 |
+
# --- 3. Run Generation ---
|
| 223 |
+
final_response_text = ""
|
| 224 |
+
try:
|
| 225 |
+
print(f"Starting Dream generation: prompt_len={prompt_length}, gen_len={gen_length}, steps={steps}")
|
| 226 |
+
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
+
# Initial masked state for visualization
|
| 229 |
+
initial_generated_state = torch.full((gen_length,), MASK_ID, dtype=torch.long)
|
| 230 |
+
# Apply constraints to the *initial* visual state if they start at pos 0
|
| 231 |
+
temp_initial_x = torch.cat((input_ids[0], initial_generated_state.to(device)), dim=0).unsqueeze(0)
|
| 232 |
+
initial_vis_x = live_visualization_hook(None, temp_initial_x, None) # Apply constraints via hook logic
|
| 233 |
+
step_sequence_history.insert(0, initial_vis_x[0, prompt_length:].cpu()) # Prepend initial state
|
| 234 |
|
|
|
|
|
|
|
|
|
|
| 235 |
output = model.diffusion_generate(
|
| 236 |
+
input_ids,
|
| 237 |
+
attention_mask=attention_mask,
|
|
|
|
| 238 |
max_new_tokens=gen_length,
|
| 239 |
output_history=False, # We capture history via the hook
|
| 240 |
return_dict_in_generate=True,
|
| 241 |
steps=steps,
|
| 242 |
temperature=temperature,
|
| 243 |
+
top_p=top_p if top_p is not None and top_p < 1.0 else None, # Ensure top_p < 1 or None
|
| 244 |
+
top_k=top_k if top_k is not None and top_k > 0 else None, # Ensure top_k > 0 or None
|
| 245 |
alg=alg,
|
| 246 |
+
alg_temp=alg_temp if alg in ['maskgit_plus', 'topk_margin', 'entropy'] else None, # Only relevant for some algs
|
| 247 |
+
generation_tokens_hook_func=live_visualization_hook
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
)
|
| 249 |
end_time = time.time()
|
| 250 |
+
print(f"Dream generation finished in {end_time - start_time:.2f} seconds.")
|
| 251 |
|
| 252 |
+
# --- 4. Process Final Output ---
|
|
|
|
| 253 |
final_sequence = output.sequences[0]
|
|
|
|
|
|
|
| 254 |
response_tokens = final_sequence[prompt_length:]
|
|
|
|
|
|
|
| 255 |
|
| 256 |
+
# Decode the final response text
|
| 257 |
+
final_response_text = tokenizer.decode(
|
| 258 |
+
response_tokens,
|
| 259 |
+
skip_special_tokens=True, # Skip EOS, PAD, MASK etc. in the final text
|
| 260 |
+
clean_up_tokenization_spaces=True
|
| 261 |
).strip()
|
| 262 |
|
| 263 |
+
# Update history with the final response
|
| 264 |
+
history[-1][1] = final_response_text
|
|
|
|
| 265 |
|
| 266 |
except Exception as e:
|
| 267 |
+
print(f"Error during generation or processing: {e}")
|
| 268 |
import traceback
|
| 269 |
traceback.print_exc()
|
| 270 |
+
yield history, [("Error during generation.", "red")], ""
|
| 271 |
+
return
|
| 272 |
+
|
| 273 |
+
# --- 5. Stream Visualization ---
|
| 274 |
+
print(f"Streaming {len(step_sequence_history)} visualization steps...")
|
| 275 |
+
previous_tokens_vis = None
|
| 276 |
+
for i, current_tokens_vis in enumerate(step_sequence_history):
|
| 277 |
+
# print(f" Step {i}: {current_tokens_vis.tolist()}") # Debug
|
| 278 |
+
vis_data = []
|
| 279 |
+
current_decoded_tokens = []
|
| 280 |
+
|
| 281 |
+
# Compare current step tokens with previous step tokens
|
| 282 |
+
for j in range(gen_length):
|
| 283 |
+
current_tok_id = current_tokens_vis[j].item()
|
| 284 |
+
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None else MASK_ID
|
| 285 |
+
|
| 286 |
+
# Decode token - handle potential errors for single IDs if needed
|
| 287 |
+
try:
|
| 288 |
+
# Use skip_special_tokens=False here to see the actual tokens
|
| 289 |
+
decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False)
|
| 290 |
+
# Explicitly handle mask token display
|
| 291 |
+
if current_tok_id == MASK_ID:
|
| 292 |
+
display_token = MASK_TOKEN
|
| 293 |
+
else:
|
| 294 |
+
display_token = decoded_token
|
| 295 |
+
|
| 296 |
+
except Exception:
|
| 297 |
+
display_token = f"[ID:{current_tok_id}]" # Fallback
|
| 298 |
+
|
| 299 |
+
# Determine color and handle hiding of special tokens (like LLaDA demo)
|
| 300 |
+
color = None
|
| 301 |
+
token_to_display = display_token
|
| 302 |
+
|
| 303 |
+
if current_tok_id == MASK_ID:
|
| 304 |
+
color = "#444444" # Dark Gray for masks
|
| 305 |
+
elif previous_tok_id == MASK_ID: # Token was just revealed
|
| 306 |
+
# Simple green for newly revealed, no confidence score available from hook
|
| 307 |
+
color = "#66CC66" # Light Green
|
| 308 |
+
else: # Token was already revealed
|
| 309 |
+
color = "#6699CC" # Light Blue
|
| 310 |
+
|
| 311 |
+
# LLaDA hiding effect: If it's a special token (EOS/PAD) *and* it was revealed before this step, hide it.
|
| 312 |
+
if current_tok_id in {PAD_ID, EOS_ID} and previous_tok_id == current_tok_id:
|
| 313 |
+
# Hide by making it empty or using a background color - empty string is simpler
|
| 314 |
+
token_to_display = ""
|
| 315 |
+
color = "#FFFFFF" # Or just make it blend in
|
| 316 |
|
| 317 |
+
# Add token and color to visualization data
|
| 318 |
+
if token_to_display: # Avoid adding empty strings if hiding
|
| 319 |
+
vis_data.append((token_to_display, color))
|
| 320 |
+
elif len(vis_data) > 0 and isinstance(vis_data[-1], tuple):
|
| 321 |
+
# If hidden, and previous was text, add a space for visual separation?
|
| 322 |
+
# This might complicate things, let's omit for now.
|
| 323 |
+
pass
|
| 324 |
+
# elif len(vis_data) == 0: # If first token is hidden
|
| 325 |
+
# vis_data.append(("", None)) # Placeholder?
|
| 326 |
|
| 327 |
+
# Update previous state for next iteration
|
| 328 |
+
previous_tokens_vis = current_tokens_vis
|
| 329 |
|
| 330 |
+
# Yield the current visualization state
|
| 331 |
+
yield history, vis_data, final_response_text
|
| 332 |
|
| 333 |
+
# Pause for the specified delay
|
| 334 |
+
time.sleep(visualization_delay)
|
| 335 |
|
| 336 |
+
print("Visualization streaming complete.")
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
# --- Gradio UI ---
|
| 340 |
css = '''
|
| 341 |
.category-legend{display:none}
|
| 342 |
+
button{min-height: 60px}
|
|
|
|
|
|
|
| 343 |
'''
|
| 344 |
def create_chatbot_demo():
|
| 345 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 346 |
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
|
| 347 |
gr.Markdown(
|
| 348 |
"[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] "
|
| 349 |
+
"[[Blog](https://hkunlp.github.io/blog/2025/dream/)]"
|
|
|
|
| 350 |
)
|
| 351 |
|
| 352 |
# STATE MANAGEMENT
|
| 353 |
chat_history = gr.State([])
|
|
|
|
|
|
|
| 354 |
|
| 355 |
# UI COMPONENTS
|
| 356 |
with gr.Row():
|
|
|
|
| 358 |
chatbot_ui = gr.Chatbot(
|
| 359 |
label="Conversation",
|
| 360 |
height=500,
|
| 361 |
+
show_copy_button=True,
|
| 362 |
+
bubble_full_width=False
|
| 363 |
+
)
|
| 364 |
|
| 365 |
# Message input
|
| 366 |
with gr.Group():
|
|
|
|
| 368 |
user_input = gr.Textbox(
|
| 369 |
label="Your Message",
|
| 370 |
placeholder="Type your message here...",
|
| 371 |
+
scale=7,
|
| 372 |
+
autofocus=True,
|
| 373 |
show_label=False,
|
| 374 |
+
container=False # Remove container for tighter packing
|
| 375 |
)
|
| 376 |
+
send_btn = gr.Button("Send", scale=1, variant="primary")
|
| 377 |
+
|
| 378 |
|
| 379 |
constraints_input = gr.Textbox(
|
| 380 |
+
label="Word Constraints (Optional)",
|
| 381 |
+
info="Place words at specific positions (0-indexed from start of generation). Format: 'pos:word, pos:word,...'. Example: '0:Once, 5:upon, 10:time'",
|
| 382 |
+
placeholder="0:Hello, 10:world",
|
| 383 |
value=""
|
| 384 |
)
|
| 385 |
with gr.Column(scale=2):
|
| 386 |
output_vis = gr.HighlightedText(
|
| 387 |
label="Denoising Process Visualization",
|
| 388 |
combine_adjacent=False,
|
| 389 |
+
show_legend=False, # Legend isn't very informative here
|
| 390 |
+
interactive=False # Not interactive
|
| 391 |
)
|
| 392 |
|
| 393 |
# Advanced generation settings
|
| 394 |
with gr.Accordion("Generation Settings", open=False):
|
| 395 |
with gr.Row():
|
| 396 |
gen_length = gr.Slider(
|
| 397 |
+
minimum=16, maximum=512, value=128, step=8, # Increased max length
|
| 398 |
label="Max New Tokens"
|
| 399 |
)
|
| 400 |
steps = gr.Slider(
|
| 401 |
+
minimum=8, maximum=512, value=128, step=8, # Increased max steps
|
| 402 |
+
label="Diffusion Steps"
|
| 403 |
)
|
| 404 |
with gr.Row():
|
| 405 |
temperature = gr.Slider(
|
| 406 |
+
minimum=0.0, maximum=1.0, value=0.4, step=0.05,
|
| 407 |
label="Temperature"
|
| 408 |
)
|
| 409 |
+
alg_temp = gr.Slider(
|
| 410 |
+
minimum=0.0, maximum=1.0, value=0.1, step=0.05,
|
| 411 |
+
label="Remasking Temp (for confidence algs)"
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
with gr.Row():
|
| 415 |
top_p = gr.Slider(
|
| 416 |
+
minimum=0.0, maximum=1.0, value=0.95, step=0.05,
|
| 417 |
+
label="Top-P (0=disabled)"
|
| 418 |
)
|
| 419 |
top_k = gr.Slider(
|
| 420 |
minimum=0, maximum=200, value=0, step=5,
|
| 421 |
label="Top-K (0=disabled)"
|
| 422 |
)
|
| 423 |
+
|
| 424 |
with gr.Row():
|
| 425 |
+
remasking_strategy = gr.Radio(
|
| 426 |
choices=['origin', 'maskgit_plus', 'topk_margin', 'entropy'],
|
| 427 |
+
value='entropy', # Default to entropy as in example
|
| 428 |
+
label="Remasking Strategy (Algorithm)"
|
| 429 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
|
| 431 |
with gr.Row():
|
| 432 |
visualization_delay = gr.Slider(
|
| 433 |
+
minimum=0.0, maximum=0.5, value=0.02, step=0.01, # Faster default
|
| 434 |
label="Visualization Delay (seconds)"
|
| 435 |
)
|
| 436 |
|
| 437 |
# Clear button
|
| 438 |
clear_btn = gr.Button("Clear Conversation")
|
| 439 |
|
| 440 |
+
# Current response text box (hidden, maybe useful for debugging)
|
| 441 |
+
# current_response = gr.Textbox(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 442 |
|
| 443 |
+
# --- Event Handlers ---
|
|
|
|
| 444 |
|
| 445 |
+
def add_user_message_to_history(message: str, history: List[List[Optional[str]]]):
|
| 446 |
+
"""Adds user message, clears input, prepares for bot response."""
|
| 447 |
+
if not message.strip():
|
| 448 |
+
gr.Warning("Please enter a message.")
|
| 449 |
+
return history, history, "", [("Enter a message", "grey")] # Keep vis empty or show prompt
|
| 450 |
|
| 451 |
+
# Add user message with placeholder for bot response
|
| 452 |
+
history.append([message, None])
|
| 453 |
+
# Return updated history for chatbot, empty input box, empty visualization
|
| 454 |
+
return history, history, "", []
|
| 455 |
|
| 456 |
|
| 457 |
def clear_conversation():
|
| 458 |
+
"""Clears the chat history and visualization."""
|
| 459 |
+
return [], [], "", []
|
| 460 |
+
|
| 461 |
+
# --- Connect UI elements ---
|
| 462 |
+
|
| 463 |
+
# User Input Submission (Textbox Enter or Send Button Click)
|
| 464 |
+
submit_triggers = [user_input.submit, send_btn.click]
|
| 465 |
+
|
| 466 |
+
# 1. Add user message to UI immediately
|
| 467 |
+
for trigger in submit_triggers:
|
| 468 |
+
trigger.then(
|
| 469 |
+
add_user_message_to_history,
|
| 470 |
+
inputs=[user_input, chat_history],
|
| 471 |
+
outputs=[chat_history, chatbot_ui, user_input, output_vis] # Update chat, clear input, clear vis
|
| 472 |
+
).then( # 2. Trigger bot response generation (as a generator)
|
| 473 |
+
generate_dream_response,
|
| 474 |
+
inputs=[
|
| 475 |
+
chat_history, gen_length, steps, constraints_input,
|
| 476 |
+
temperature, top_p, top_k, remasking_strategy, alg_temp,
|
| 477 |
+
visualization_delay
|
| 478 |
+
],
|
| 479 |
+
outputs=[chatbot_ui, output_vis] # Stream updates to chatbot and visualization
|
| 480 |
+
# Note: The final text response is implicitly handled by updating chatbot_ui
|
| 481 |
+
)
|
| 482 |
|
| 483 |
+
# Clear Button Action
|
| 484 |
clear_btn.click(
|
| 485 |
+
clear_conversation,
|
| 486 |
inputs=[],
|
| 487 |
outputs=[chat_history, chatbot_ui, user_input, output_vis]
|
| 488 |
)
|
| 489 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 490 |
return demo
|
| 491 |
|
| 492 |
+
# --- Launch ---
|
| 493 |
if __name__ == "__main__":
|
| 494 |
demo = create_chatbot_demo()
|
| 495 |
+
# Use queue for handling multiple users and streaming
|
| 496 |
+
demo.queue().launch(debug=True, share=True) # Add share=True for public link if needed
|