Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,11 +9,9 @@ import time
|
|
9 |
import re
|
10 |
from typing import List, Dict, Tuple, Optional
|
11 |
import torch.distributions as dists # Added import
|
12 |
-
import traceback # For printing exceptions
|
13 |
|
14 |
# --- START: Copied Helper functions from generation_utils.py ---
|
15 |
-
#
|
16 |
-
|
17 |
def top_p_logits(logits, top_p=None):
|
18 |
""" Applies top-p filtering to logits. """
|
19 |
if top_p is None or top_p >= 1.0:
|
@@ -21,10 +19,8 @@ def top_p_logits(logits, top_p=None):
|
|
21 |
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
22 |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
23 |
sorted_indices_to_remove = cumulative_probs > top_p
|
24 |
-
# Shift the indices to the right to keep the first token above the threshold
|
25 |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
26 |
sorted_indices_to_remove[..., 0] = 0
|
27 |
-
|
28 |
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
|
29 |
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
|
30 |
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
|
@@ -34,10 +30,7 @@ def top_k_logits(logits, top_k=None):
|
|
34 |
""" Applies top-k filtering to logits. """
|
35 |
if top_k is None or top_k <= 0:
|
36 |
return logits
|
37 |
-
top_k = min(top_k, logits.size(-1))
|
38 |
-
if top_k == logits.size(-1): # Avoid unnecessary computation if k is full size
|
39 |
-
return logits
|
40 |
-
# Remove all tokens with a probability less than the last token of the top-k
|
41 |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
42 |
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
|
43 |
return logits
|
@@ -45,201 +38,145 @@ def top_k_logits(logits, top_k=None):
|
|
45 |
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
|
46 |
""" Samples tokens based on logits and calculates confidence. """
|
47 |
if temperature > 0:
|
48 |
-
# Prevent division by zero or negative temperatures
|
49 |
safe_temp = max(temperature, 1e-6)
|
50 |
logits = logits / safe_temp
|
51 |
-
if top_p is not None and 0.0 < top_p < 1.0:
|
52 |
logits = top_p_logits(logits, top_p)
|
53 |
-
if top_k is not None and top_k > 0:
|
54 |
logits = top_k_logits(logits, top_k)
|
55 |
-
|
56 |
-
# Ensure logits are not all -inf after filtering, if so, assign uniform probability.
|
57 |
-
is_all_neg_inf = torch.all(logits <= torch.finfo(logits.dtype).min, dim=-1, keepdim=True)
|
58 |
if torch.any(is_all_neg_inf):
|
59 |
-
|
60 |
-
uniform_logits = torch.zeros_like(logits) # Uniform logits (zeros before softmax)
|
61 |
logits = torch.where(is_all_neg_inf, uniform_logits, logits)
|
62 |
-
|
63 |
probs = torch.softmax(logits, dim=-1)
|
64 |
-
|
65 |
-
|
66 |
-
probs = torch.
|
67 |
-
prob_sum_for_norm = probs.sum(dim=-1, keepdim=True)
|
68 |
-
# Use a tolerance check for division
|
69 |
-
safe_prob_sum_for_norm = torch.where(prob_sum_for_norm > 1e-12, prob_sum_for_norm, torch.ones_like(prob_sum_for_norm))
|
70 |
-
probs = probs / safe_prob_sum_for_norm # Re-normalize with safe denominator
|
71 |
-
probs = torch.nan_to_num(probs, nan=0.0) # Handle any remaining NaNs
|
72 |
-
|
73 |
if temperature > 0:
|
74 |
try:
|
75 |
-
# Ensure probs sum to 1 before sampling
|
76 |
-
probs_sum_check = probs.sum(dim=-1)
|
77 |
-
if not torch.all(torch.isclose(probs_sum_check, torch.ones_like(probs_sum_check))):
|
78 |
-
# print(f"Warning: Probs do not sum to 1 before sampling ({probs_sum_check}). Re-normalizing.")
|
79 |
-
probs = probs / probs.sum(dim=-1, keepdim=True) # Final normalization attempt
|
80 |
-
|
81 |
x0 = dists.Categorical(probs=probs).sample()
|
82 |
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
|
83 |
-
except Exception as e:
|
84 |
print(f"Warning: Error during Categorical sampling: {e}. Falling back to argmax.")
|
85 |
confidence, x0 = probs.max(dim=-1)
|
86 |
-
else:
|
87 |
confidence, x0 = probs.max(dim=-1)
|
88 |
-
|
89 |
if margin_confidence:
|
90 |
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
|
91 |
-
# Ensure there are at least 2 probabilities to compare
|
92 |
top1_probs = sorted_probs[..., 0]
|
93 |
-
top2_probs = sorted_probs[..., 1] if sorted_probs.shape[-1] > 1 else
|
94 |
confidence = top1_probs - top2_probs
|
95 |
-
|
96 |
if neg_entropy:
|
97 |
-
epsilon =
|
98 |
-
|
99 |
-
|
100 |
-
confidence = torch.sum(probs * log_probs, dim=-1) # This is negative entropy
|
101 |
-
|
102 |
-
# Ensure confidence is not NaN
|
103 |
confidence = torch.nan_to_num(confidence, nan=0.0)
|
104 |
-
|
105 |
return confidence, x0
|
106 |
# --- END: Copied Helper functions ---
|
107 |
|
108 |
|
109 |
-
#
|
110 |
-
# Load model configuration to get special token IDs
|
111 |
config = AutoConfig.from_pretrained("Dream-org/Dream-v0-Instruct-7B", trust_remote_code=True)
|
112 |
-
# Use AutoModel for the base model loading, relying on trust_remote_code=True
|
113 |
-
# for the custom DreamModel class and generation mixin.
|
114 |
model_path = "Dream-org/Dream-v0-Instruct-7B"
|
115 |
-
|
116 |
-
# Determine device
|
117 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
118 |
print(f"Using device: {device}")
|
119 |
-
|
120 |
-
# Load model and tokenizer
|
121 |
print("Loading tokenizer...")
|
122 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
123 |
print("Loading model...")
|
124 |
-
# Ensure torch_dtype is set appropriately for your hardware if needed
|
125 |
model = AutoModel.from_pretrained(
|
126 |
model_path,
|
127 |
-
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32,
|
128 |
trust_remote_code=True,
|
129 |
-
attn_implementation="sdpa"
|
130 |
)
|
131 |
model = model.to(device).eval()
|
132 |
print("Model loaded.")
|
133 |
-
|
134 |
-
# Constants from Dream's config/tokenizer
|
135 |
MASK_TOKEN = tokenizer.mask_token
|
136 |
-
MASK_ID = tokenizer.mask_token_id
|
137 |
-
PAD_ID = tokenizer.pad_token_id
|
138 |
-
EOS_ID = tokenizer.eos_token_id
|
139 |
-
|
140 |
-
if MASK_ID is None:
|
141 |
-
print("Warning: Mask token ID not found in config/tokenizer. Trying to fetch from tokenizer...")
|
142 |
-
mask_token_special = tokenizer.mask_token
|
143 |
-
if mask_token_special:
|
144 |
-
MASK_ID = tokenizer.convert_tokens_to_ids(mask_token_special)
|
145 |
-
print(f"Found MASK_ID from tokenizer: {MASK_ID}")
|
146 |
-
else:
|
147 |
-
raise ValueError("Cannot determine MASK_ID. Check model's tokenizer configuration.")
|
148 |
-
|
149 |
SPECIAL_TOKEN_IDS = {PAD_ID, EOS_ID, MASK_ID}
|
150 |
try:
|
151 |
IM_START_ID = tokenizer.convert_tokens_to_ids("<|im_start|>")
|
152 |
IM_END_ID = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
153 |
-
|
154 |
-
|
155 |
-
except KeyError:
|
156 |
-
print("Warning: <|im_start|> or <|im_end|> not found in tokenizer vocab.")
|
157 |
-
IM_START_ID = None
|
158 |
-
IM_END_ID = None
|
159 |
|
160 |
|
161 |
-
# ---
|
162 |
def parse_constraints(constraints_text: str) -> Dict[int, List[int]]:
|
163 |
-
""" Parses constraints. """
|
164 |
constraints = {}
|
165 |
-
if not constraints_text:
|
166 |
-
return constraints
|
167 |
-
|
168 |
-
# Simple split on comma, assumes format 'pos:word, pos:word'
|
169 |
parts = constraints_text.split(',')
|
170 |
-
|
171 |
for part in parts:
|
172 |
part = part.strip()
|
173 |
-
if ':' not in part:
|
174 |
-
continue
|
175 |
pos_str, word = part.split(':', 1)
|
176 |
try:
|
177 |
pos = int(pos_str.strip())
|
178 |
word = word.strip()
|
179 |
token_ids = []
|
180 |
-
if word:
|
181 |
-
# Add space prefix automatically if pos > 0 and word doesn't start with space
|
182 |
text_to_encode = (" " + word) if (pos > 0 and not word.startswith(" ")) else word
|
183 |
token_ids = tokenizer.encode(text_to_encode, add_special_tokens=False)
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
print(f"Warning: Could not tokenize constraint word '{word}'")
|
189 |
-
except ValueError:
|
190 |
-
print(f"Warning: Invalid position '{pos_str}' in constraint part '{part}'")
|
191 |
-
continue # Ignore malformed constraint parts
|
192 |
-
except Exception as e:
|
193 |
-
print(f"Warning: Error processing constraint '{part}': {e}")
|
194 |
-
continue
|
195 |
-
|
196 |
-
# print(f"Parsed constraints: {constraints}") # Debugging
|
197 |
return constraints
|
198 |
|
199 |
-
|
200 |
def format_chat_history(history: List[List[Optional[str]]]) -> List[Dict[str, str]]:
|
201 |
-
"""
|
|
|
|
|
|
|
202 |
messages = []
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
if assistant_msg is not None:
|
208 |
-
|
|
|
|
|
209 |
return messages
|
210 |
|
211 |
def apply_constraints_to_state(
|
212 |
-
x: torch.Tensor,
|
213 |
-
|
214 |
-
total_length: int,
|
215 |
-
parsed_constraints: Dict[int, List[int]],
|
216 |
-
current_step: Optional[int] = None # For logging/debugging
|
217 |
) -> torch.Tensor:
|
218 |
-
""" Applies constraints
|
219 |
-
modified_x = x.clone()
|
220 |
for rel_pos, word_token_ids in parsed_constraints.items():
|
221 |
abs_start_pos = prompt_length + rel_pos
|
222 |
abs_end_pos = abs_start_pos + len(word_token_ids)
|
223 |
-
|
224 |
-
# Ensure the constraint fits within the generation length
|
225 |
if abs_start_pos < total_length and abs_end_pos <= total_length:
|
226 |
try:
|
227 |
constraint_tensor = torch.tensor(word_token_ids, dtype=torch.long, device=modified_x.device)
|
228 |
-
# Force the constraint tokens onto the sequence
|
229 |
modified_x[0, abs_start_pos:abs_end_pos] = constraint_tensor
|
230 |
-
except IndexError:
|
231 |
-
|
232 |
-
except Exception as e:
|
233 |
-
print(f"Warning (Step {current_step}): Failed to apply constraint at {rel_pos}: {e}")
|
234 |
return modified_x
|
235 |
|
236 |
|
237 |
# --- Core Generation Logic with Live Visualization ---
|
238 |
|
239 |
-
@spaces.GPU
|
240 |
-
@torch.no_grad()
|
241 |
def generate_dream_response(
|
242 |
-
history: List[List[Optional[str]]], #
|
243 |
gen_length: int,
|
244 |
steps: int,
|
245 |
constraints_text: str,
|
@@ -249,19 +186,17 @@ def generate_dream_response(
|
|
249 |
alg: str,
|
250 |
alg_temp: Optional[float],
|
251 |
visualization_delay: float
|
252 |
-
) ->
|
253 |
""" Generates text step-by-step and yields visualization states live. """
|
254 |
|
255 |
-
#
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
# Yield the original history back if there's no input
|
260 |
-
yield history, [("No input message found.", "red")], ""
|
261 |
return
|
262 |
|
263 |
# --- 1. Preparation ---
|
264 |
-
|
265 |
messages_for_template = format_chat_history(history)
|
266 |
parsed_constraints = parse_constraints(constraints_text)
|
267 |
|
@@ -270,13 +205,17 @@ def generate_dream_response(
|
|
270 |
messages_for_template,
|
271 |
return_tensors="pt",
|
272 |
return_dict=True,
|
273 |
-
add_generation_prompt=True
|
274 |
)
|
275 |
input_ids = inputs.input_ids.to(device)
|
276 |
prompt_attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else torch.ones_like(input_ids)
|
277 |
prompt_length = input_ids.shape[1]
|
|
|
|
|
|
|
278 |
except Exception as e:
|
279 |
print(f"Error applying chat template: {e}")
|
|
|
280 |
yield history, [("Error preparing input.", "red")], ""
|
281 |
return
|
282 |
|
@@ -290,103 +229,89 @@ def generate_dream_response(
|
|
290 |
initial_generation_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
|
291 |
x = torch.cat((input_ids, initial_generation_part), dim=1)
|
292 |
|
|
|
293 |
generation_attention_mask = torch.ones((1, gen_length), dtype=torch.long, device=device)
|
294 |
full_attention_mask_long = torch.cat((prompt_attention_mask, generation_attention_mask), dim=1)
|
295 |
-
|
296 |
attention_mask_for_model = full_attention_mask_long.to(model.dtype)
|
297 |
large_neg_val = torch.finfo(model.dtype).min
|
298 |
attention_mask_for_model = (1.0 - attention_mask_for_model) * large_neg_val
|
299 |
-
attention_mask_for_model = attention_mask_for_model.unsqueeze(1).unsqueeze(2)
|
300 |
|
301 |
timesteps = torch.linspace(1, eps, steps + 1, device=device)
|
302 |
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=-1)
|
303 |
|
304 |
-
# --- 3. Visualization Setup ---
|
305 |
previous_tokens_vis = None
|
306 |
-
|
307 |
-
# history_copy
|
|
|
|
|
|
|
308 |
|
309 |
# --- 4. Initial Yield (Masked State) ---
|
310 |
initial_generated_tokens = x[0, prompt_length:].cpu()
|
311 |
vis_data_initial = []
|
312 |
for tok_id in initial_generated_tokens.tolist():
|
313 |
-
|
314 |
-
color = "#444444"
|
315 |
-
vis_data_initial.append((display_token, color))
|
316 |
-
|
317 |
previous_tokens_vis = initial_generated_tokens
|
318 |
-
# Yield the current
|
319 |
-
yield
|
320 |
time.sleep(visualization_delay)
|
321 |
|
322 |
# --- 5. Step-by-Step Diffusion Loop ---
|
323 |
try:
|
324 |
start_time = time.time()
|
|
|
|
|
325 |
for i in range(steps):
|
326 |
mask_index = (x == MASK_ID)
|
327 |
if not mask_index.any():
|
328 |
print(f"No mask tokens left at step {i}. Stopping early.")
|
329 |
break
|
330 |
|
331 |
-
# --- Model Forward Pass ---
|
332 |
outputs = model(
|
333 |
input_ids=x,
|
334 |
attention_mask=attention_mask_for_model,
|
335 |
-
position_ids=None,
|
336 |
-
use_cache=False,
|
337 |
-
return_dict=True
|
338 |
)
|
339 |
logits = outputs.logits
|
340 |
-
logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1)
|
341 |
|
342 |
mask_logits = logits[mask_index]
|
343 |
if mask_logits.numel() == 0:
|
344 |
print(f"No masked tokens found for logit selection at step {i}. Stopping.")
|
345 |
break
|
346 |
|
347 |
-
|
348 |
-
t = timesteps[i]
|
349 |
-
s = timesteps[i + 1]
|
350 |
x_new_masked_part = torch.full_like(x[mask_index], MASK_ID, device=device, dtype=torch.long)
|
351 |
|
352 |
-
# [
|
353 |
if alg == 'origin':
|
354 |
p_transfer = (1.0 - s / t) if i < steps - 1 else 1.0
|
355 |
num_masked = mask_logits.shape[0]
|
356 |
transfer_indices_relative = torch.rand(num_masked, device=device) < p_transfer
|
357 |
logits_to_sample = mask_logits[transfer_indices_relative]
|
358 |
-
|
359 |
if logits_to_sample.numel() > 0:
|
360 |
_, sampled_tokens = sample_tokens(logits_to_sample, temperature=temperature, top_p=top_p_val, top_k=top_k_val)
|
361 |
x_new_masked_part[transfer_indices_relative] = sampled_tokens
|
362 |
-
|
363 |
-
|
364 |
-
use_margin = (alg == 'topk_margin')
|
365 |
-
use_entropy = (alg == 'entropy')
|
366 |
confidence, x0_candidates = sample_tokens(
|
367 |
-
mask_logits,
|
368 |
-
|
369 |
-
top_p=top_p_val,
|
370 |
-
top_k=top_k_val,
|
371 |
-
margin_confidence=use_margin,
|
372 |
-
neg_entropy=use_entropy
|
373 |
)
|
374 |
-
|
375 |
num_mask_token = mask_logits.shape[0]
|
376 |
target_num_revealed_float = num_mask_token * (1.0 - s / t)
|
377 |
number_transfer_tokens = int(target_num_revealed_float) if i < steps - 1 else num_mask_token
|
378 |
-
|
379 |
if number_transfer_tokens > 0:
|
380 |
num_samples = min(number_transfer_tokens, num_mask_token)
|
381 |
if num_samples > 0:
|
382 |
-
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device) #
|
383 |
-
if alg_temp_val is None or alg_temp_val <= 0: # Top-k
|
384 |
sort_metric = confidence if alg != 'entropy' else -confidence
|
385 |
k_topk = min(num_samples, sort_metric.numel())
|
386 |
-
if k_topk > 0:
|
387 |
-
|
388 |
-
|
389 |
-
else: # Sample based on confidence temperature
|
390 |
if confidence.numel() > 0:
|
391 |
conf_probs = confidence / alg_temp_val
|
392 |
conf_probs = torch.nan_to_num(conf_probs, nan=0.0, posinf=1e9, neginf=-1e9)
|
@@ -394,41 +319,26 @@ def generate_dream_response(
|
|
394 |
conf_probs = F.softmax(conf_probs, dim=-1)
|
395 |
conf_probs = torch.clamp(conf_probs, min=0.0)
|
396 |
conf_probs = torch.nan_to_num(conf_probs, nan=0.0)
|
397 |
-
|
398 |
prob_sum = conf_probs.sum()
|
399 |
target_sum_tensor = torch.tensor(1.0, device=device, dtype=prob_sum.dtype)
|
400 |
if not torch.isclose(prob_sum, target_sum_tensor, atol=1e-4) and prob_sum > 0:
|
401 |
safe_prob_sum = torch.max(prob_sum, torch.tensor(1e-12, device=device, dtype=prob_sum.dtype))
|
402 |
conf_probs = conf_probs / safe_prob_sum
|
403 |
-
|
404 |
final_prob_sum_check = conf_probs.sum()
|
405 |
if conf_probs.numel() > 0 and num_samples > 0 and torch.all(conf_probs >= 0) and torch.isclose(final_prob_sum_check, target_sum_tensor, atol=1e-4):
|
406 |
-
try:
|
407 |
-
|
408 |
-
|
409 |
-
print(f"Warning step {i}: Multinomial sampling failed ('{e}'). Falling back to top-k.")
|
410 |
-
sort_metric = confidence if alg != 'entropy' else -confidence
|
411 |
-
k_multinomial_fallback = min(num_samples, sort_metric.numel())
|
412 |
-
if k_multinomial_fallback > 0:
|
413 |
-
_, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback)
|
414 |
-
else:
|
415 |
-
# print(f"Warning step {i}: Invalid probabilities for multinomial sampling (sum={final_prob_sum_check:.4f}). Falling back to top-k.")
|
416 |
sort_metric = confidence if alg != 'entropy' else -confidence
|
417 |
-
|
418 |
-
if
|
419 |
-
|
420 |
-
# else: # No confidence values to sample from, transfer_indices_relative remains empty
|
421 |
-
|
422 |
-
# Apply the transfer
|
423 |
if transfer_indices_relative.numel() > 0:
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
else:
|
430 |
-
print(f"Warning step {i}: transfer_indices out of bounds for x_new_masked_part.")
|
431 |
-
# --- End Sampling Logic ---
|
432 |
|
433 |
x[mask_index] = x_new_masked_part
|
434 |
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=i)
|
@@ -436,7 +346,7 @@ def generate_dream_response(
|
|
436 |
# --- Yield Visualization ---
|
437 |
current_generated_tokens = x[0, prompt_length:].cpu()
|
438 |
vis_data = []
|
439 |
-
# [
|
440 |
for j in range(gen_length):
|
441 |
current_tok_id = current_generated_tokens[j].item()
|
442 |
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
|
@@ -448,25 +358,30 @@ def generate_dream_response(
|
|
448 |
if current_tok_id == MASK_ID: color = "#444444"
|
449 |
elif previous_tok_id == MASK_ID: color = "#66CC66"
|
450 |
else: color = "#6699CC"
|
451 |
-
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or
|
452 |
-
(EOS_ID is not None and current_tok_id == EOS_ID)
|
453 |
if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None
|
454 |
if token_to_display: vis_data.append((token_to_display, color))
|
455 |
-
# ---
|
456 |
|
457 |
previous_tokens_vis = current_generated_tokens
|
458 |
|
|
|
459 |
intermediate_response_tokens = x[0, prompt_length:]
|
460 |
-
|
461 |
intermediate_response_tokens,
|
462 |
skip_special_tokens=True,
|
463 |
clean_up_tokenization_spaces=True
|
464 |
).strip()
|
465 |
|
466 |
-
#
|
467 |
-
|
|
|
|
|
|
|
|
|
|
|
468 |
time.sleep(visualization_delay)
|
469 |
-
|
470 |
|
471 |
end_time = time.time()
|
472 |
print(f"Dream generation finished in {end_time - start_time:.2f} seconds.")
|
@@ -480,41 +395,43 @@ def generate_dream_response(
|
|
480 |
clean_up_tokenization_spaces=True
|
481 |
).strip()
|
482 |
|
483 |
-
#
|
484 |
-
if
|
485 |
-
|
486 |
-
# Now the list referenced by _chat_history_store is updated.
|
487 |
|
|
|
488 |
final_generated_tokens = x[0, prompt_length:].cpu()
|
489 |
vis_data_final = []
|
490 |
-
# [
|
491 |
for j in range(gen_length):
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
yield history, vis_data_final, final_response_text
|
510 |
print("Visualization streaming complete.")
|
511 |
|
512 |
except Exception as e:
|
513 |
print(f"Error during generation or processing: {e}")
|
514 |
import traceback
|
515 |
traceback.print_exc()
|
516 |
-
#
|
517 |
-
|
|
|
|
|
|
|
518 |
return
|
519 |
|
520 |
|
@@ -528,13 +445,12 @@ def create_chatbot_demo():
|
|
528 |
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
|
529 |
gr.Markdown(
|
530 |
"[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] "
|
531 |
-
"[[Blog](https://hkunlp.github.io/blog/2025/dream/)]"
|
532 |
)
|
533 |
|
534 |
-
#
|
535 |
-
|
536 |
|
537 |
-
# UI COMPONENTS
|
538 |
with gr.Row():
|
539 |
with gr.Column(scale=3):
|
540 |
chatbot_ui = gr.Chatbot(
|
@@ -542,39 +458,31 @@ def create_chatbot_demo():
|
|
542 |
height=500,
|
543 |
show_copy_button=True,
|
544 |
bubble_full_width=False,
|
|
|
545 |
)
|
546 |
with gr.Group():
|
547 |
with gr.Row():
|
548 |
user_input = gr.Textbox(
|
549 |
-
label="Your Message",
|
550 |
-
|
551 |
-
scale=7,
|
552 |
-
autofocus=True,
|
553 |
-
show_label=False,
|
554 |
-
container=False
|
555 |
)
|
556 |
send_btn = gr.Button("Send", scale=1, variant="primary")
|
557 |
constraints_input = gr.Textbox(
|
558 |
label="Word Constraints (Optional)",
|
559 |
-
info="
|
560 |
-
placeholder="0:Hello, 10:world",
|
561 |
-
value=""
|
562 |
)
|
563 |
with gr.Column(scale=2):
|
564 |
output_vis = gr.HighlightedText(
|
565 |
-
label="Denoising Process Visualization",
|
566 |
-
|
567 |
-
show_legend=True,
|
568 |
-
interactive=False
|
569 |
)
|
570 |
response_text_display = gr.Textbox(
|
571 |
-
label="Generated Response",
|
572 |
-
interactive=False,
|
573 |
-
lines=5
|
574 |
)
|
575 |
|
576 |
-
# Advanced generation settings
|
577 |
with gr.Accordion("Generation Settings", open=False):
|
|
|
578 |
with gr.Row():
|
579 |
gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens")
|
580 |
steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps")
|
@@ -589,84 +497,89 @@ def create_chatbot_demo():
|
|
589 |
with gr.Row():
|
590 |
visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.03, step=0.01, label="Visualization Delay (seconds)")
|
591 |
|
592 |
-
|
593 |
clear_btn = gr.Button("Clear Conversation")
|
594 |
|
595 |
-
# --- Event
|
596 |
|
597 |
-
def
|
598 |
-
"""
|
|
|
|
|
|
|
599 |
if not message.strip():
|
600 |
gr.Warning("Please enter a message.")
|
601 |
-
# Return unchanged history
|
602 |
-
return
|
603 |
-
# Append user message
|
604 |
-
|
605 |
-
# Return updated history
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
return [], [], "", [], "" #
|
612 |
|
613 |
# --- Connect UI elements ---
|
614 |
|
615 |
-
# Define
|
616 |
generation_inputs = [
|
617 |
-
|
618 |
temperature, top_p, top_k, remasking_strategy, alg_temp,
|
619 |
visualization_delay
|
620 |
]
|
621 |
-
#
|
622 |
-
|
623 |
-
|
624 |
-
#
|
625 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
626 |
|
627 |
-
# Handle Textbox Submission (Enter key)
|
628 |
submit_listener = user_input.submit(
|
629 |
-
fn=
|
630 |
-
inputs=
|
631 |
-
|
632 |
-
|
633 |
-
)
|
634 |
-
# Chain the bot response generation after the user message is added
|
635 |
-
submit_listener.then(
|
636 |
fn=generate_dream_response,
|
637 |
-
inputs=generation_inputs, #
|
638 |
-
#
|
639 |
-
outputs=generation_outputs, # Maps the final yielded history back to the store
|
640 |
show_progress="hidden"
|
641 |
)
|
642 |
|
643 |
-
# Handle Send Button Click
|
644 |
click_listener = send_btn.click(
|
645 |
-
fn=
|
646 |
-
inputs=
|
647 |
-
outputs=
|
648 |
-
)
|
649 |
-
# Chain the bot response generation after the user message is added
|
650 |
-
click_listener.then(
|
651 |
fn=generate_dream_response,
|
652 |
inputs=generation_inputs,
|
653 |
-
|
654 |
-
outputs=generation_outputs, # Map final history back to store here too
|
655 |
show_progress="hidden"
|
656 |
)
|
657 |
|
658 |
-
# Clear Button
|
659 |
clear_btn.click(
|
660 |
-
|
661 |
inputs=[],
|
662 |
-
|
663 |
-
|
|
|
|
|
664 |
)
|
665 |
|
666 |
return demo
|
667 |
|
|
|
668 |
# --- Launch ---
|
669 |
if __name__ == "__main__":
|
670 |
demo = create_chatbot_demo()
|
671 |
-
|
672 |
-
demo.queue().launch(debug=True, share=False) # Set share=True for public link
|
|
|
9 |
import re
|
10 |
from typing import List, Dict, Tuple, Optional
|
11 |
import torch.distributions as dists # Added import
|
|
|
12 |
|
13 |
# --- START: Copied Helper functions from generation_utils.py ---
|
14 |
+
# [Keep the copied functions: top_p_logits, top_k_logits, sample_tokens]
|
|
|
15 |
def top_p_logits(logits, top_p=None):
|
16 |
""" Applies top-p filtering to logits. """
|
17 |
if top_p is None or top_p >= 1.0:
|
|
|
19 |
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
20 |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
21 |
sorted_indices_to_remove = cumulative_probs > top_p
|
|
|
22 |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
23 |
sorted_indices_to_remove[..., 0] = 0
|
|
|
24 |
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
|
25 |
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
|
26 |
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
|
|
|
30 |
""" Applies top-k filtering to logits. """
|
31 |
if top_k is None or top_k <= 0:
|
32 |
return logits
|
33 |
+
top_k = min(top_k, logits.size(-1))
|
|
|
|
|
|
|
34 |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
35 |
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
|
36 |
return logits
|
|
|
38 |
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
|
39 |
""" Samples tokens based on logits and calculates confidence. """
|
40 |
if temperature > 0:
|
|
|
41 |
safe_temp = max(temperature, 1e-6)
|
42 |
logits = logits / safe_temp
|
43 |
+
if top_p is not None and 0.0 < top_p < 1.0:
|
44 |
logits = top_p_logits(logits, top_p)
|
45 |
+
if top_k is not None and top_k > 0:
|
46 |
logits = top_k_logits(logits, top_k)
|
47 |
+
is_all_neg_inf = torch.all(logits == torch.finfo(logits.dtype).min, dim=-1, keepdim=True)
|
|
|
|
|
48 |
if torch.any(is_all_neg_inf):
|
49 |
+
uniform_logits = torch.zeros_like(logits)
|
|
|
50 |
logits = torch.where(is_all_neg_inf, uniform_logits, logits)
|
|
|
51 |
probs = torch.softmax(logits, dim=-1)
|
52 |
+
probs = torch.clamp(probs, min=0.0)
|
53 |
+
probs = probs / probs.sum(dim=-1, keepdim=True)
|
54 |
+
probs = torch.nan_to_num(probs, nan=0.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
if temperature > 0:
|
56 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
x0 = dists.Categorical(probs=probs).sample()
|
58 |
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
|
59 |
+
except Exception as e:
|
60 |
print(f"Warning: Error during Categorical sampling: {e}. Falling back to argmax.")
|
61 |
confidence, x0 = probs.max(dim=-1)
|
62 |
+
else:
|
63 |
confidence, x0 = probs.max(dim=-1)
|
|
|
64 |
if margin_confidence:
|
65 |
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
|
|
|
66 |
top1_probs = sorted_probs[..., 0]
|
67 |
+
top2_probs = sorted_probs[..., 1] if sorted_probs.shape[-1] > 1 else top1_probs
|
68 |
confidence = top1_probs - top2_probs
|
|
|
69 |
if neg_entropy:
|
70 |
+
epsilon = 1e-10
|
71 |
+
log_probs = torch.log(probs + epsilon)
|
72 |
+
confidence = torch.sum(probs * log_probs, dim=-1)
|
|
|
|
|
|
|
73 |
confidence = torch.nan_to_num(confidence, nan=0.0)
|
|
|
74 |
return confidence, x0
|
75 |
# --- END: Copied Helper functions ---
|
76 |
|
77 |
|
78 |
+
# [Keep model loading, constants]
|
|
|
79 |
config = AutoConfig.from_pretrained("Dream-org/Dream-v0-Instruct-7B", trust_remote_code=True)
|
|
|
|
|
80 |
model_path = "Dream-org/Dream-v0-Instruct-7B"
|
|
|
|
|
81 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
82 |
print(f"Using device: {device}")
|
|
|
|
|
83 |
print("Loading tokenizer...")
|
84 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
85 |
print("Loading model...")
|
|
|
86 |
model = AutoModel.from_pretrained(
|
87 |
model_path,
|
88 |
+
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32,
|
89 |
trust_remote_code=True,
|
90 |
+
attn_implementation="sdpa"
|
91 |
)
|
92 |
model = model.to(device).eval()
|
93 |
print("Model loaded.")
|
|
|
|
|
94 |
MASK_TOKEN = tokenizer.mask_token
|
95 |
+
MASK_ID = tokenizer.mask_token_id
|
96 |
+
PAD_ID = tokenizer.pad_token_id
|
97 |
+
EOS_ID = tokenizer.eos_token_id
|
98 |
+
if MASK_ID is None: raise ValueError("Cannot determine MASK_ID.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
SPECIAL_TOKEN_IDS = {PAD_ID, EOS_ID, MASK_ID}
|
100 |
try:
|
101 |
IM_START_ID = tokenizer.convert_tokens_to_ids("<|im_start|>")
|
102 |
IM_END_ID = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
103 |
+
SPECIAL_TOKEN_IDS.add(IM_START_ID)
|
104 |
+
SPECIAL_TOKEN_IDS.add(IM_END_ID)
|
105 |
+
except KeyError: IM_START_ID, IM_END_ID = None, None
|
|
|
|
|
|
|
106 |
|
107 |
|
108 |
+
# --- Helper Functions ---
|
109 |
def parse_constraints(constraints_text: str) -> Dict[int, List[int]]:
|
110 |
+
""" Parses word constraints. """
|
111 |
constraints = {}
|
112 |
+
if not constraints_text: return constraints
|
|
|
|
|
|
|
113 |
parts = constraints_text.split(',')
|
|
|
114 |
for part in parts:
|
115 |
part = part.strip()
|
116 |
+
if ':' not in part: continue
|
|
|
117 |
pos_str, word = part.split(':', 1)
|
118 |
try:
|
119 |
pos = int(pos_str.strip())
|
120 |
word = word.strip()
|
121 |
token_ids = []
|
122 |
+
if word:
|
|
|
123 |
text_to_encode = (" " + word) if (pos > 0 and not word.startswith(" ")) else word
|
124 |
token_ids = tokenizer.encode(text_to_encode, add_special_tokens=False)
|
125 |
+
if token_ids and pos >= 0: constraints[pos] = token_ids
|
126 |
+
elif not token_ids and word: print(f"Warning: Could not tokenize constraint word '{word}'")
|
127 |
+
except ValueError: print(f"Warning: Invalid position '{pos_str}' in constraint part '{part}'")
|
128 |
+
except Exception as e: print(f"Warning: Error processing constraint '{part}': {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
return constraints
|
130 |
|
|
|
131 |
def format_chat_history(history: List[List[Optional[str]]]) -> List[Dict[str, str]]:
|
132 |
+
"""
|
133 |
+
Formats chat history [[user, bot], [user, bot]] into [{'role': 'user', 'content': ...}, ...]
|
134 |
+
for the tokenizer's chat template.
|
135 |
+
"""
|
136 |
messages = []
|
137 |
+
# Ensure history is not empty and is properly structured
|
138 |
+
if not history:
|
139 |
+
return messages
|
140 |
+
for turn in history:
|
141 |
+
if not isinstance(turn, (list, tuple)) or len(turn) != 2:
|
142 |
+
print(f"Warning: Skipping malformed history turn: {turn}")
|
143 |
+
continue
|
144 |
+
user_msg, assistant_msg = turn
|
145 |
+
if user_msg is not None: # Check if user message exists
|
146 |
+
# Ensure content is a string
|
147 |
+
user_content = str(user_msg) if user_msg is not None else ""
|
148 |
+
messages.append({"role": "user", "content": user_content})
|
149 |
+
# Add assistant message only if it exists and is not None
|
150 |
if assistant_msg is not None:
|
151 |
+
assistant_content = str(assistant_msg) if assistant_msg is not None else ""
|
152 |
+
messages.append({"role": "assistant", "content": assistant_content})
|
153 |
+
# print(f"Formatted messages for template: {messages}") # Debug
|
154 |
return messages
|
155 |
|
156 |
def apply_constraints_to_state(
|
157 |
+
x: torch.Tensor, prompt_length: int, total_length: int,
|
158 |
+
parsed_constraints: Dict[int, List[int]], current_step: Optional[int] = None
|
|
|
|
|
|
|
159 |
) -> torch.Tensor:
|
160 |
+
""" Applies constraints to the state tensor `x`. """
|
161 |
+
modified_x = x.clone()
|
162 |
for rel_pos, word_token_ids in parsed_constraints.items():
|
163 |
abs_start_pos = prompt_length + rel_pos
|
164 |
abs_end_pos = abs_start_pos + len(word_token_ids)
|
|
|
|
|
165 |
if abs_start_pos < total_length and abs_end_pos <= total_length:
|
166 |
try:
|
167 |
constraint_tensor = torch.tensor(word_token_ids, dtype=torch.long, device=modified_x.device)
|
|
|
168 |
modified_x[0, abs_start_pos:abs_end_pos] = constraint_tensor
|
169 |
+
except IndexError: print(f"Warning (Step {current_step}): Constraint OOB: {rel_pos}")
|
170 |
+
except Exception as e: print(f"Warning (Step {current_step}): Constraint failed {rel_pos}: {e}")
|
|
|
|
|
171 |
return modified_x
|
172 |
|
173 |
|
174 |
# --- Core Generation Logic with Live Visualization ---
|
175 |
|
176 |
+
@spaces.GPU
|
177 |
+
@torch.no_grad()
|
178 |
def generate_dream_response(
|
179 |
+
history: List[List[Optional[str]]], # IMPORTANT: This is the *full* history from the state
|
180 |
gen_length: int,
|
181 |
steps: int,
|
182 |
constraints_text: str,
|
|
|
186 |
alg: str,
|
187 |
alg_temp: Optional[float],
|
188 |
visualization_delay: float
|
189 |
+
): # No return type annotation for generators in older Python? Or use -> Iterator[Tuple[...]]
|
190 |
""" Generates text step-by-step and yields visualization states live. """
|
191 |
|
192 |
+
# Ensure history is valid before proceeding
|
193 |
+
if not history or not history[-1] or history[-1][0] is None:
|
194 |
+
# Yield the current (potentially empty) history back
|
195 |
+
yield history, [("No valid input message found.", "red")], ""
|
|
|
|
|
196 |
return
|
197 |
|
198 |
# --- 1. Preparation ---
|
199 |
+
# Use the *entire* history received from the state for context
|
200 |
messages_for_template = format_chat_history(history)
|
201 |
parsed_constraints = parse_constraints(constraints_text)
|
202 |
|
|
|
205 |
messages_for_template,
|
206 |
return_tensors="pt",
|
207 |
return_dict=True,
|
208 |
+
add_generation_prompt=True # This adds the assistant prompt turn
|
209 |
)
|
210 |
input_ids = inputs.input_ids.to(device)
|
211 |
prompt_attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else torch.ones_like(input_ids)
|
212 |
prompt_length = input_ids.shape[1]
|
213 |
+
# print(f"Prompt length for model: {prompt_length}") # Debug
|
214 |
+
# print(f"Input IDs to model (first 50): {input_ids[0, :50].tolist()}") # Debug
|
215 |
+
|
216 |
except Exception as e:
|
217 |
print(f"Error applying chat template: {e}")
|
218 |
+
# Yield the current history back with an error message
|
219 |
yield history, [("Error preparing input.", "red")], ""
|
220 |
return
|
221 |
|
|
|
229 |
initial_generation_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
|
230 |
x = torch.cat((input_ids, initial_generation_part), dim=1)
|
231 |
|
232 |
+
# --- Prepare Attention Mask ---
|
233 |
generation_attention_mask = torch.ones((1, gen_length), dtype=torch.long, device=device)
|
234 |
full_attention_mask_long = torch.cat((prompt_attention_mask, generation_attention_mask), dim=1)
|
|
|
235 |
attention_mask_for_model = full_attention_mask_long.to(model.dtype)
|
236 |
large_neg_val = torch.finfo(model.dtype).min
|
237 |
attention_mask_for_model = (1.0 - attention_mask_for_model) * large_neg_val
|
238 |
+
attention_mask_for_model = attention_mask_for_model.unsqueeze(1).unsqueeze(2) # Shape [B, 1, 1, N]
|
239 |
|
240 |
timesteps = torch.linspace(1, eps, steps + 1, device=device)
|
241 |
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=-1)
|
242 |
|
243 |
+
# --- 3. Visualization & State Setup ---
|
244 |
previous_tokens_vis = None
|
245 |
+
# Use the passed-in history directly. We will modify the *last* item's assistant response.
|
246 |
+
# No need for history_copy if we are careful. Let's try modifying `history` directly.
|
247 |
+
# IMPORTANT: Gradio state needs the component to receive the *entire object* back if it's mutated.
|
248 |
+
# So yielding the modified `history` list itself should work.
|
249 |
+
history_for_yield = history # Reference the original list
|
250 |
|
251 |
# --- 4. Initial Yield (Masked State) ---
|
252 |
initial_generated_tokens = x[0, prompt_length:].cpu()
|
253 |
vis_data_initial = []
|
254 |
for tok_id in initial_generated_tokens.tolist():
|
255 |
+
vis_data_initial.append((MASK_TOKEN, "#444444"))
|
|
|
|
|
|
|
256 |
previous_tokens_vis = initial_generated_tokens
|
257 |
+
# Yield the *current* history (with None for last bot msg)
|
258 |
+
yield history_for_yield, vis_data_initial, ""
|
259 |
time.sleep(visualization_delay)
|
260 |
|
261 |
# --- 5. Step-by-Step Diffusion Loop ---
|
262 |
try:
|
263 |
start_time = time.time()
|
264 |
+
current_response_text = "" # Store intermediate text
|
265 |
+
|
266 |
for i in range(steps):
|
267 |
mask_index = (x == MASK_ID)
|
268 |
if not mask_index.any():
|
269 |
print(f"No mask tokens left at step {i}. Stopping early.")
|
270 |
break
|
271 |
|
|
|
272 |
outputs = model(
|
273 |
input_ids=x,
|
274 |
attention_mask=attention_mask_for_model,
|
275 |
+
position_ids=None, use_cache=False, return_dict=True
|
|
|
|
|
276 |
)
|
277 |
logits = outputs.logits
|
278 |
+
logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1)
|
279 |
|
280 |
mask_logits = logits[mask_index]
|
281 |
if mask_logits.numel() == 0:
|
282 |
print(f"No masked tokens found for logit selection at step {i}. Stopping.")
|
283 |
break
|
284 |
|
285 |
+
t = timesteps[i]; s = timesteps[i + 1]
|
|
|
|
|
286 |
x_new_masked_part = torch.full_like(x[mask_index], MASK_ID, device=device, dtype=torch.long)
|
287 |
|
288 |
+
# [Sampling logic remains the same as previous working version]
|
289 |
if alg == 'origin':
|
290 |
p_transfer = (1.0 - s / t) if i < steps - 1 else 1.0
|
291 |
num_masked = mask_logits.shape[0]
|
292 |
transfer_indices_relative = torch.rand(num_masked, device=device) < p_transfer
|
293 |
logits_to_sample = mask_logits[transfer_indices_relative]
|
|
|
294 |
if logits_to_sample.numel() > 0:
|
295 |
_, sampled_tokens = sample_tokens(logits_to_sample, temperature=temperature, top_p=top_p_val, top_k=top_k_val)
|
296 |
x_new_masked_part[transfer_indices_relative] = sampled_tokens
|
297 |
+
else: # Confidence-based
|
298 |
+
use_margin = (alg == 'topk_margin'); use_entropy = (alg == 'entropy')
|
|
|
|
|
299 |
confidence, x0_candidates = sample_tokens(
|
300 |
+
mask_logits, temperature=temperature, top_p=top_p_val, top_k=top_k_val,
|
301 |
+
margin_confidence=use_margin, neg_entropy=use_entropy
|
|
|
|
|
|
|
|
|
302 |
)
|
|
|
303 |
num_mask_token = mask_logits.shape[0]
|
304 |
target_num_revealed_float = num_mask_token * (1.0 - s / t)
|
305 |
number_transfer_tokens = int(target_num_revealed_float) if i < steps - 1 else num_mask_token
|
|
|
306 |
if number_transfer_tokens > 0:
|
307 |
num_samples = min(number_transfer_tokens, num_mask_token)
|
308 |
if num_samples > 0:
|
309 |
+
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device) # Init empty
|
310 |
+
if alg_temp_val is None or alg_temp_val <= 0: # Top-k
|
311 |
sort_metric = confidence if alg != 'entropy' else -confidence
|
312 |
k_topk = min(num_samples, sort_metric.numel())
|
313 |
+
if k_topk > 0: _, transfer_indices_relative = torch.topk(sort_metric, k=k_topk)
|
314 |
+
else: # Sampled
|
|
|
|
|
315 |
if confidence.numel() > 0:
|
316 |
conf_probs = confidence / alg_temp_val
|
317 |
conf_probs = torch.nan_to_num(conf_probs, nan=0.0, posinf=1e9, neginf=-1e9)
|
|
|
319 |
conf_probs = F.softmax(conf_probs, dim=-1)
|
320 |
conf_probs = torch.clamp(conf_probs, min=0.0)
|
321 |
conf_probs = torch.nan_to_num(conf_probs, nan=0.0)
|
|
|
322 |
prob_sum = conf_probs.sum()
|
323 |
target_sum_tensor = torch.tensor(1.0, device=device, dtype=prob_sum.dtype)
|
324 |
if not torch.isclose(prob_sum, target_sum_tensor, atol=1e-4) and prob_sum > 0:
|
325 |
safe_prob_sum = torch.max(prob_sum, torch.tensor(1e-12, device=device, dtype=prob_sum.dtype))
|
326 |
conf_probs = conf_probs / safe_prob_sum
|
|
|
327 |
final_prob_sum_check = conf_probs.sum()
|
328 |
if conf_probs.numel() > 0 and num_samples > 0 and torch.all(conf_probs >= 0) and torch.isclose(final_prob_sum_check, target_sum_tensor, atol=1e-4):
|
329 |
+
try: transfer_indices_relative = torch.multinomial(conf_probs, num_samples=num_samples, replacement=False)
|
330 |
+
except RuntimeError as e: print(f"W{i}: Multinomial failed ('{e}'). Fallback.") # Fallback handled below
|
331 |
+
if transfer_indices_relative.numel() == 0: # Fallback if sampling failed or wasn't possible
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
sort_metric = confidence if alg != 'entropy' else -confidence
|
333 |
+
k_fallback = min(num_samples, sort_metric.numel())
|
334 |
+
if k_fallback > 0: _, transfer_indices_relative = torch.topk(sort_metric, k=k_fallback)
|
335 |
+
# Apply transfer
|
|
|
|
|
|
|
336 |
if transfer_indices_relative.numel() > 0:
|
337 |
+
valid_indices = transfer_indices_relative < x0_candidates.shape[0]
|
338 |
+
valid_transfer_indices = transfer_indices_relative[valid_indices]
|
339 |
+
if valid_transfer_indices.numel() > 0 and valid_transfer_indices.max() < x_new_masked_part.shape[0]:
|
340 |
+
x_new_masked_part[valid_transfer_indices] = x0_candidates[valid_transfer_indices].clone()
|
341 |
+
|
|
|
|
|
|
|
342 |
|
343 |
x[mask_index] = x_new_masked_part
|
344 |
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=i)
|
|
|
346 |
# --- Yield Visualization ---
|
347 |
current_generated_tokens = x[0, prompt_length:].cpu()
|
348 |
vis_data = []
|
349 |
+
# [Visualization formatting logic remains the same]
|
350 |
for j in range(gen_length):
|
351 |
current_tok_id = current_generated_tokens[j].item()
|
352 |
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
|
|
|
358 |
if current_tok_id == MASK_ID: color = "#444444"
|
359 |
elif previous_tok_id == MASK_ID: color = "#66CC66"
|
360 |
else: color = "#6699CC"
|
361 |
+
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or (EOS_ID is not None and current_tok_id == EOS_ID)
|
|
|
362 |
if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None
|
363 |
if token_to_display: vis_data.append((token_to_display, color))
|
364 |
+
# ---
|
365 |
|
366 |
previous_tokens_vis = current_generated_tokens
|
367 |
|
368 |
+
# --- Update intermediate response text ---
|
369 |
intermediate_response_tokens = x[0, prompt_length:]
|
370 |
+
current_response_text = tokenizer.decode(
|
371 |
intermediate_response_tokens,
|
372 |
skip_special_tokens=True,
|
373 |
clean_up_tokenization_spaces=True
|
374 |
).strip()
|
375 |
|
376 |
+
# --- Update history for yield ---
|
377 |
+
# Update the placeholder in the *last turn* of the history list
|
378 |
+
if history_for_yield and history_for_yield[-1]:
|
379 |
+
history_for_yield[-1][1] = current_response_text + "..." # Indicate streaming
|
380 |
+
|
381 |
+
# --- Yield current state ---
|
382 |
+
yield history_for_yield, vis_data, current_response_text
|
383 |
time.sleep(visualization_delay)
|
384 |
+
# --- End loop iteration ---
|
385 |
|
386 |
end_time = time.time()
|
387 |
print(f"Dream generation finished in {end_time - start_time:.2f} seconds.")
|
|
|
395 |
clean_up_tokenization_spaces=True
|
396 |
).strip()
|
397 |
|
398 |
+
# Update the history definitively with the final text
|
399 |
+
if history_for_yield and history_for_yield[-1]:
|
400 |
+
history_for_yield[-1][1] = final_response_text
|
|
|
401 |
|
402 |
+
# Format final visualization
|
403 |
final_generated_tokens = x[0, prompt_length:].cpu()
|
404 |
vis_data_final = []
|
405 |
+
# [Final visualization formatting logic remains the same]
|
406 |
for j in range(gen_length):
|
407 |
+
current_tok_id = final_generated_tokens[j].item()
|
408 |
+
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
|
409 |
+
try:
|
410 |
+
decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False)
|
411 |
+
display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
|
412 |
+
except Exception: display_token = f"[ID:{current_tok_id}]"
|
413 |
+
color = None; token_to_display = display_token
|
414 |
+
if current_tok_id == MASK_ID: color = "#444444"
|
415 |
+
elif previous_tok_id == MASK_ID: color = "#66CC66"
|
416 |
+
else: color = "#6699CC"
|
417 |
+
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or (EOS_ID is not None and current_tok_id == EOS_ID)
|
418 |
+
if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None
|
419 |
+
if token_to_display: vis_data_final.append((token_to_display, color))
|
420 |
+
# ---
|
421 |
+
|
422 |
+
# Yield the final state
|
423 |
+
yield history_for_yield, vis_data_final, final_response_text
|
|
|
424 |
print("Visualization streaming complete.")
|
425 |
|
426 |
except Exception as e:
|
427 |
print(f"Error during generation or processing: {e}")
|
428 |
import traceback
|
429 |
traceback.print_exc()
|
430 |
+
# Ensure the history state reflects the error somehow? Or just yield error vis.
|
431 |
+
# Yield the history *as it was* when the error occurred.
|
432 |
+
if history_for_yield and history_for_yield[-1]:
|
433 |
+
history_for_yield[-1][1] = f"<Error: {e}>" # Put error in bot response
|
434 |
+
yield history_for_yield, [("Error during generation.", "red")], ""
|
435 |
return
|
436 |
|
437 |
|
|
|
445 |
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
|
446 |
gr.Markdown(
|
447 |
"[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] "
|
448 |
+
"[[Blog](https://hkunlp.github.io/blog/2025/dream/)]"
|
449 |
)
|
450 |
|
451 |
+
# Use a single state variable for the history list
|
452 |
+
chat_history_state = gr.State([])
|
453 |
|
|
|
454 |
with gr.Row():
|
455 |
with gr.Column(scale=3):
|
456 |
chatbot_ui = gr.Chatbot(
|
|
|
458 |
height=500,
|
459 |
show_copy_button=True,
|
460 |
bubble_full_width=False,
|
461 |
+
# value=[] # Initial value set by state binding later
|
462 |
)
|
463 |
with gr.Group():
|
464 |
with gr.Row():
|
465 |
user_input = gr.Textbox(
|
466 |
+
label="Your Message", placeholder="Type your message here...",
|
467 |
+
scale=7, autofocus=True, show_label=False, container=False
|
|
|
|
|
|
|
|
|
468 |
)
|
469 |
send_btn = gr.Button("Send", scale=1, variant="primary")
|
470 |
constraints_input = gr.Textbox(
|
471 |
label="Word Constraints (Optional)",
|
472 |
+
info="Format: 'pos:word, pos:word,...'. Example: '0:Once, 5:upon, 10:time'",
|
473 |
+
placeholder="0:Hello, 10:world", value=""
|
|
|
474 |
)
|
475 |
with gr.Column(scale=2):
|
476 |
output_vis = gr.HighlightedText(
|
477 |
+
label="Denoising Process Visualization", combine_adjacent=True,
|
478 |
+
show_legend=False, interactive=False
|
|
|
|
|
479 |
)
|
480 |
response_text_display = gr.Textbox(
|
481 |
+
label="Generated Response (Live)", interactive=False, lines=5
|
|
|
|
|
482 |
)
|
483 |
|
|
|
484 |
with gr.Accordion("Generation Settings", open=False):
|
485 |
+
# [Settings sliders remain the same]
|
486 |
with gr.Row():
|
487 |
gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens")
|
488 |
steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps")
|
|
|
497 |
with gr.Row():
|
498 |
visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.03, step=0.01, label="Visualization Delay (seconds)")
|
499 |
|
500 |
+
|
501 |
clear_btn = gr.Button("Clear Conversation")
|
502 |
|
503 |
+
# --- Event Handler Functions ---
|
504 |
|
505 |
+
def add_user_message(message: str, history: List[List[Optional[str]]]):
|
506 |
+
"""
|
507 |
+
Adds the user message to the history state and prepares the UI
|
508 |
+
for the bot's response (clearing previous outputs).
|
509 |
+
"""
|
510 |
if not message.strip():
|
511 |
gr.Warning("Please enter a message.")
|
512 |
+
# Return unchanged history and empty outputs
|
513 |
+
return history, history, "", [], ""
|
514 |
+
# Append new turn with user message and None placeholder for bot response
|
515 |
+
history.append([message, None])
|
516 |
+
# Return updated history (for state), history (for immediate UI update),
|
517 |
+
# empty input, empty vis, empty response text.
|
518 |
+
return history, history, "", [], ""
|
519 |
+
|
520 |
+
def clear_all():
|
521 |
+
"""Clears state and all relevant UI components."""
|
522 |
+
return [], [], "", [], "" # state, chatbot, input, vis, response text
|
523 |
|
524 |
# --- Connect UI elements ---
|
525 |
|
526 |
+
# Define inputs/outputs for the generator
|
527 |
generation_inputs = [
|
528 |
+
chat_history_state, gen_length, steps, constraints_input,
|
529 |
temperature, top_p, top_k, remasking_strategy, alg_temp,
|
530 |
visualization_delay
|
531 |
]
|
532 |
+
# Generator yields: history_list, vis_data, response_text
|
533 |
+
generation_outputs = [chatbot_ui, output_vis, response_text_display]
|
534 |
+
|
535 |
+
# Chain the actions: Submit/Click -> add_user_message -> generate_dream_response
|
536 |
+
|
537 |
+
# 1. User submits message (Enter or Button)
|
538 |
+
user_interaction = [user_input, chat_history_state]
|
539 |
+
outputs_after_user_add = [
|
540 |
+
chat_history_state, # Update the state
|
541 |
+
chatbot_ui, # Update chatbot UI immediately
|
542 |
+
user_input, # Clear user input box
|
543 |
+
output_vis, # Clear visualization
|
544 |
+
response_text_display # Clear response text box
|
545 |
+
]
|
546 |
|
|
|
547 |
submit_listener = user_input.submit(
|
548 |
+
fn=add_user_message,
|
549 |
+
inputs=user_interaction,
|
550 |
+
outputs=outputs_after_user_add
|
551 |
+
).then( # 2. Trigger generation AFTER user message is added and UI cleared
|
|
|
|
|
|
|
552 |
fn=generate_dream_response,
|
553 |
+
inputs=generation_inputs, # Pass the updated state and parameters
|
554 |
+
outputs=generation_outputs, # Stream updates to chatbot, vis, text
|
|
|
555 |
show_progress="hidden"
|
556 |
)
|
557 |
|
|
|
558 |
click_listener = send_btn.click(
|
559 |
+
fn=add_user_message,
|
560 |
+
inputs=user_interaction,
|
561 |
+
outputs=outputs_after_user_add
|
562 |
+
).then( # 2. Trigger generation AFTER user message is added and UI cleared
|
|
|
|
|
563 |
fn=generate_dream_response,
|
564 |
inputs=generation_inputs,
|
565 |
+
outputs=generation_outputs,
|
|
|
566 |
show_progress="hidden"
|
567 |
)
|
568 |
|
569 |
+
# 3. Clear Button
|
570 |
clear_btn.click(
|
571 |
+
clear_all,
|
572 |
inputs=[],
|
573 |
+
outputs=[
|
574 |
+
chat_history_state, chatbot_ui, user_input,
|
575 |
+
output_vis, response_text_display
|
576 |
+
]
|
577 |
)
|
578 |
|
579 |
return demo
|
580 |
|
581 |
+
|
582 |
# --- Launch ---
|
583 |
if __name__ == "__main__":
|
584 |
demo = create_chatbot_demo()
|
585 |
+
demo.queue().launch(debug=True, share=False)
|
|