File size: 21,543 Bytes
ce90309
47fc4a0
ce90309
47fc4a0
f4ff30a
168a7c1
825e87d
47fc4a0
f4ff30a
 
 
 
 
 
 
 
168a7c1
825e87d
168a7c1
 
 
f4ff30a
 
168a7c1
f4ff30a
 
825e87d
 
f4ff30a
825e87d
f4ff30a
 
 
825e87d
f4ff30a
 
825e87d
f4ff30a
 
 
 
 
 
 
 
 
 
 
ce90309
 
47fc4a0
f4ff30a
 
 
 
 
 
47fc4a0
 
f4ff30a
47fc4a0
 
 
 
 
825e87d
47fc4a0
f4ff30a
47fc4a0
 
f4ff30a
 
 
 
 
 
47fc4a0
f4ff30a
ce90309
f4ff30a
 
 
 
47fc4a0
168a7c1
f4ff30a
47fc4a0
f4ff30a
47fc4a0
 
f4ff30a
 
c691b46
47fc4a0
f4ff30a
47fc4a0
 
f4ff30a
 
 
 
825e87d
 
f4ff30a
825e87d
f4ff30a
 
47fc4a0
 
 
 
f4ff30a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168a7c1
f4ff30a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168a7c1
825e87d
f4ff30a
 
 
 
 
 
 
 
 
 
 
825e87d
f4ff30a
825e87d
f4ff30a
 
 
 
 
825e87d
 
f4ff30a
825e87d
f4ff30a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
825e87d
f4ff30a
 
 
 
 
 
825e87d
 
f4ff30a
 
825e87d
 
 
 
 
f4ff30a
 
825e87d
f4ff30a
 
825e87d
 
f4ff30a
9b91020
f4ff30a
825e87d
 
c691b46
f4ff30a
 
 
 
 
825e87d
ce90309
f4ff30a
 
ce90309
825e87d
f4ff30a
825e87d
 
f4ff30a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c691b46
f4ff30a
 
 
 
 
 
 
 
 
ce90309
f4ff30a
 
47fc4a0
f4ff30a
 
ce90309
f4ff30a
 
168a7c1
f4ff30a
 
 
 
47fc4a0
 
f4ff30a
47fc4a0
 
168a7c1
ce90309
168a7c1
 
f4ff30a
168a7c1
47fc4a0
 
ce90309
47fc4a0
ce90309
47fc4a0
 
825e87d
 
 
f4ff30a
 
 
47fc4a0
ce90309
 
 
47fc4a0
 
ce90309
f4ff30a
 
825e87d
f4ff30a
47fc4a0
f4ff30a
 
47fc4a0
 
f4ff30a
 
 
ce90309
47fc4a0
 
 
168a7c1
ecc9ba6
f4ff30a
 
47fc4a0
 
ce90309
 
168a7c1
 
f4ff30a
168a7c1
 
 
f4ff30a
 
168a7c1
 
 
f4ff30a
168a7c1
 
f4ff30a
 
 
 
 
 
168a7c1
f4ff30a
 
168a7c1
825e87d
 
 
168a7c1
f4ff30a
825e87d
f4ff30a
825e87d
f4ff30a
 
 
825e87d
168a7c1
 
f4ff30a
168a7c1
 
47fc4a0
ce90309
 
47fc4a0
f4ff30a
 
168a7c1
f4ff30a
168a7c1
f4ff30a
 
 
 
 
168a7c1
f4ff30a
 
 
 
168a7c1
ce90309
825e87d
f4ff30a
 
 
 
 
5807c79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47fc4a0
f4ff30a
47fc4a0
825e87d
 
 
47fc4a0
 
f4ff30a
47fc4a0
ce90309
f4ff30a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
# dream_app.py
import torch
import numpy as np
import gradio as gr
import spaces # Ensure spaces is installed if needed for GPU decorator
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, AutoConfig
import time
import re
from typing import List, Dict, Tuple, Optional

# Load model configuration to get special token IDs
config = AutoConfig.from_pretrained("Dream-org/Dream-v0-Instruct-7B", trust_remote_code=True)
# Use AutoModel for the base model loading, relying on trust_remote_code=True
# for the custom DreamModel class and generation mixin.
model_path = "Dream-org/Dream-v0-Instruct-7B"

# Determine device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")

# Load model and tokenizer
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
print("Loading model...")
# Ensure torch_dtype is set appropriately for your hardware if needed
model = AutoModel.from_pretrained(
    model_path,
    torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32, # Use bfloat16 only on CUDA
    trust_remote_code=True
)
model = model.to(device).eval()
print("Model loaded.")

# Constants from Dream's config/tokenizer
# Use attributes from loaded config/tokenizer objects
MASK_TOKEN = tokenizer.mask_token
MASK_ID = config.mask_token_id
PAD_ID = config.pad_token_id
EOS_ID = config.eos_token_id
# Make sure EOS_ID and PAD_ID are handled correctly; Dream uses the same ID for both
SPECIAL_TOKEN_IDS = {PAD_ID, EOS_ID, MASK_ID}
# Add other special tokens defined in tokenizer_config.json if needed for hiding
# Get IDs for im_start, im_end etc. if they should also be hidden/handled specially
IM_START_ID = tokenizer.convert_tokens_to_ids("<|im_start|>")
IM_END_ID = tokenizer.convert_tokens_to_ids("<|im_end|>")
SPECIAL_TOKEN_IDS.add(IM_START_ID)
SPECIAL_TOKEN_IDS.add(IM_END_ID)

# --- Helper Functions ---

def parse_constraints(constraints_text: str) -> Dict[int, List[int]]:
    """
    Parse constraints in format: 'position:word, position:word, ...'
    Returns a dictionary mapping the starting position (0-indexed from the start
    of the *generated* sequence) to a list of token IDs for the constraint word.
    """
    constraints = {}
    if not constraints_text:
        return constraints

    parts = constraints_text.split(',')
    for part in parts:
        if ':' not in part:
            continue
        pos_str, word = part.split(':', 1)
        try:
            # Position relative to the start of the *generation*
            pos = int(pos_str.strip())
            word = word.strip()
            # Tokenize the word - add leading space if not BOS? Dream handles spaces.
            # Check Dream tokenizer behavior for spaces. Assuming standard behavior:
            token_ids = tokenizer.encode(" " + word if pos > 0 else word, add_special_tokens=False)

            if token_ids and pos >= 0:
                constraints[pos] = token_ids
        except ValueError:
            continue # Ignore malformed constraint parts
        except Exception as e:
            print(f"Warning: Error processing constraint '{part}': {e}")
            continue

    return constraints


def format_chat_history(history: List[List[Optional[str]]]) -> List[Dict[str, str]]:
    """
    Format chat history for the Dream model's chat template.

    Args:
        history: List of [user_message, assistant_message] pairs.
                 The last assistant_message might be None.

    Returns:
        Formatted list of message dictionaries for tokenizer.apply_chat_template.
    """
    messages = []
     # Check if the first message is a system prompt, handle accordingly if needed
    # Based on Dream's examples, the template adds a default system prompt if none exists.
    # If history starts with System, it should be handled by the template.
    # Let's assume the template handles the system prompt correctly.

    for user_msg, assistant_msg in history:
        if user_msg: # Defensive check
             messages.append({"role": "user", "content": user_msg})
        # Add assistant message only if it exists (it won't for the last turn before generation)
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})

    return messages

# --- Core Generation Logic with Live Visualization ---

@spaces.GPU # Decorator for Hugging Face Spaces GPU usage
def generate_dream_response(
    history: List[List[Optional[str]]],
    gen_length: int,
    steps: int,
    constraints_text: str,
    temperature: float,
    top_p: Optional[float],
    top_k: Optional[int],
    alg: str,
    alg_temp: Optional[float],
    visualization_delay: float
    ) -> List[Tuple[str, str]]:
    """
    Generates text using the Dream model and yields visualization states live.

    Args:
        history: Chat history.
        gen_length: Max new tokens to generate.
        steps: Number of diffusion steps.
        constraints_text: User-provided constraints string.
        temperature: Sampling temperature.
        top_p: Top-p sampling nucleus.
        top_k: Top-k sampling.
        alg: Remasking algorithm ('origin', 'maskgit_plus', 'topk_margin', 'entropy').
        alg_temp: Temperature for confidence-based algorithms.
        visualization_delay: Delay between visualization steps.

    Yields:
        Tuple[List[List[Optional[str]]], List[Tuple[str, Optional[str]]], str]:
            - Updated history
            - Visualization data for HighlightedText
            - Final response text (repeated in each yield)
    """

    if not history or not history[-1][0]:
        # No user message to respond to
        yield history, [("No input message found.", "red")], ""
        return

    # --- 1. Preparation ---
    last_user_message = history[-1][0]
    messages_for_template = format_chat_history(history) # Includes the latest user message

    # Parse constraints relative to the *generated* sequence
    parsed_constraints = parse_constraints(constraints_text) # Dict[rel_pos, List[token_id]]

    # Prepare inputs using the chat template
    try:
        inputs = tokenizer.apply_chat_template(
            messages_for_template,
            return_tensors="pt",
            return_dict=True,
            add_generation_prompt=True # Important for instruct models
        )
        input_ids = inputs.input_ids.to(device)
        attention_mask = inputs.attention_mask.to(device)
        prompt_length = input_ids.shape[1]
    except Exception as e:
        print(f"Error applying chat template: {e}")
        yield history, [("Error preparing input.", "red")], ""
        return

    # Calculate total sequence length for the model
    # Max length constraint from model config (e.g., 2048 for original Dream?)
    # Let's use a reasonable default or allow configuration if needed.
    # The provided code uses max_position_embeddings=131072, let's stick to user input + gen_length.
    total_length = prompt_length + gen_length

    # --- 2. Visualization Setup ---
    # This list will store the token sequence (just the generated part) at each step
    step_sequence_history: List[torch.Tensor] = []
    previous_step_tokens = None # Keep track of the previous step's state

    # Define the hook function *inside* this function to capture state
    def live_visualization_hook(step: Optional[int], x: torch.Tensor, logits: Optional[torch.Tensor]) -> torch.Tensor:
        nonlocal step_sequence_history, parsed_constraints, prompt_length

        # --- Apply Constraints ---
        # Constraints are applied *after* the model proposes tokens but *before* they are finalized for the step
        # Note: The hook receives the state *before* the next model call in the next step,
        # or the final state after the last step. Let's apply constraints consistently.
        # The `diffusion_generate` calls the hook *after* updating x based on sampling.
        current_x = x.clone() # Work on a copy

        for rel_pos, word_token_ids in parsed_constraints.items():
            abs_start_pos = prompt_length + rel_pos
            abs_end_pos = abs_start_pos + len(word_token_ids)

            # Ensure the constraint fits within the generation length
            if abs_start_pos < total_length and abs_end_pos <= total_length:
                try:
                    constraint_tensor = torch.tensor(word_token_ids, dtype=torch.long, device=current_x.device)
                    # Force the constraint tokens onto the sequence
                    current_x[0, abs_start_pos:abs_end_pos] = constraint_tensor
                except IndexError:
                     print(f"Warning: Constraint at {rel_pos} ('{tokenizer.decode(word_token_ids)}') goes out of bounds.")
                except Exception as e:
                     print(f"Warning: Failed to apply constraint at {rel_pos}: {e}")

        # Store the state *after* constraints for visualization
        # We only need the generated part
        generated_part = current_x[0, prompt_length:].clone().cpu() # Move to CPU to save GPU memory
        step_sequence_history.append(generated_part)

        # Return the (potentially modified by constraints) tensor x
        return current_x # Pass the constrained version to the next step

    # --- 3. Run Generation ---
    final_response_text = ""
    try:
        print(f"Starting Dream generation: prompt_len={prompt_length}, gen_len={gen_length}, steps={steps}")
        start_time = time.time()

        # Initial masked state for visualization
        initial_generated_state = torch.full((gen_length,), MASK_ID, dtype=torch.long)
        # Apply constraints to the *initial* visual state if they start at pos 0
        temp_initial_x = torch.cat((input_ids[0], initial_generated_state.to(device)), dim=0).unsqueeze(0)
        initial_vis_x = live_visualization_hook(None, temp_initial_x, None) # Apply constraints via hook logic
        step_sequence_history.insert(0, initial_vis_x[0, prompt_length:].cpu()) # Prepend initial state

        output = model.diffusion_generate(
            input_ids,
            attention_mask=attention_mask,
            max_new_tokens=gen_length,
            output_history=False, # We capture history via the hook
            return_dict_in_generate=True,
            steps=steps,
            temperature=temperature,
            top_p=top_p if top_p is not None and top_p < 1.0 else None, # Ensure top_p < 1 or None
            top_k=top_k if top_k is not None and top_k > 0 else None,    # Ensure top_k > 0 or None
            alg=alg,
            alg_temp=alg_temp if alg in ['maskgit_plus', 'topk_margin', 'entropy'] else None, # Only relevant for some algs
            generation_tokens_hook_func=live_visualization_hook
        )
        end_time = time.time()
        print(f"Dream generation finished in {end_time - start_time:.2f} seconds.")

        # --- 4. Process Final Output ---
        final_sequence = output.sequences[0]
        response_tokens = final_sequence[prompt_length:]

        # Decode the final response text
        final_response_text = tokenizer.decode(
            response_tokens,
            skip_special_tokens=True, # Skip EOS, PAD, MASK etc. in the final text
            clean_up_tokenization_spaces=True
        ).strip()

        # Update history with the final response
        history[-1][1] = final_response_text

    except Exception as e:
        print(f"Error during generation or processing: {e}")
        import traceback
        traceback.print_exc()
        yield history, [("Error during generation.", "red")], ""
        return

    # --- 5. Stream Visualization ---
    print(f"Streaming {len(step_sequence_history)} visualization steps...")
    previous_tokens_vis = None
    for i, current_tokens_vis in enumerate(step_sequence_history):
        # print(f"  Step {i}: {current_tokens_vis.tolist()}") # Debug
        vis_data = []
        current_decoded_tokens = []

        # Compare current step tokens with previous step tokens
        for j in range(gen_length):
            current_tok_id = current_tokens_vis[j].item()
            previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None else MASK_ID

            # Decode token - handle potential errors for single IDs if needed
            try:
                 # Use skip_special_tokens=False here to see the actual tokens
                decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False)
                # Explicitly handle mask token display
                if current_tok_id == MASK_ID:
                    display_token = MASK_TOKEN
                else:
                    display_token = decoded_token

            except Exception:
                display_token = f"[ID:{current_tok_id}]" # Fallback

            # Determine color and handle hiding of special tokens (like LLaDA demo)
            color = None
            token_to_display = display_token

            if current_tok_id == MASK_ID:
                color = "#444444" # Dark Gray for masks
            elif previous_tok_id == MASK_ID: # Token was just revealed
                 # Simple green for newly revealed, no confidence score available from hook
                 color = "#66CC66" # Light Green
            else: # Token was already revealed
                color = "#6699CC" # Light Blue

            # LLaDA hiding effect: If it's a special token (EOS/PAD) *and* it was revealed before this step, hide it.
            if current_tok_id in {PAD_ID, EOS_ID} and previous_tok_id == current_tok_id:
                 # Hide by making it empty or using a background color - empty string is simpler
                 token_to_display = ""
                 color = "#FFFFFF" # Or just make it blend in

            # Add token and color to visualization data
            if token_to_display: # Avoid adding empty strings if hiding
                vis_data.append((token_to_display, color))
            elif len(vis_data) > 0 and isinstance(vis_data[-1], tuple):
                 # If hidden, and previous was text, add a space for visual separation?
                 # This might complicate things, let's omit for now.
                 pass
            # elif len(vis_data) == 0: # If first token is hidden
            #     vis_data.append(("", None)) # Placeholder?

        # Update previous state for next iteration
        previous_tokens_vis = current_tokens_vis

        # Yield the current visualization state
        yield history, vis_data, final_response_text

        # Pause for the specified delay
        time.sleep(visualization_delay)

    print("Visualization streaming complete.")


# --- Gradio UI ---
css = '''
.category-legend{display:none}
button{min-height: 60px}
'''
def create_chatbot_demo():
    with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
        gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
        gr.Markdown(
            "[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] "
            "[[Blog](https://hkunlp.github.io/blog/2025/dream/)]"
        )

        # STATE MANAGEMENT
        chat_history = gr.State([])

        # UI COMPONENTS
        with gr.Row():
            with gr.Column(scale=3):
                chatbot_ui = gr.Chatbot(
                    label="Conversation",
                    height=500,
                    show_copy_button=True,
                    bubble_full_width=False
                )

                # Message input
                with gr.Group():
                    with gr.Row():
                        user_input = gr.Textbox(
                            label="Your Message",
                            placeholder="Type your message here...",
                            scale=7,
                            autofocus=True,
                            show_label=False,
                            container=False # Remove container for tighter packing
                        )
                        send_btn = gr.Button("Send", scale=1, variant="primary")


                constraints_input = gr.Textbox(
                    label="Word Constraints (Optional)",
                    info="Place words at specific positions (0-indexed from start of generation). Format: 'pos:word, pos:word,...'. Example: '0:Once, 5:upon, 10:time'",
                    placeholder="0:Hello, 10:world",
                    value=""
                )
            with gr.Column(scale=2):
                output_vis = gr.HighlightedText(
                    label="Denoising Process Visualization",
                    combine_adjacent=True,
                    show_legend=False, # Legend isn't very informative here
                    interactive=False # Not interactive
                )

        # Advanced generation settings
        with gr.Accordion("Generation Settings", open=False):
            with gr.Row():
                gen_length = gr.Slider(
                    minimum=16, maximum=512, value=128, step=8, # Increased max length
                    label="Max New Tokens"
                )
                steps = gr.Slider(
                    minimum=8, maximum=512, value=128, step=8, # Increased max steps
                    label="Diffusion Steps"
                )
            with gr.Row():
                temperature = gr.Slider(
                    minimum=0.0, maximum=1.0, value=0.4, step=0.05,
                    label="Temperature"
                )
                alg_temp = gr.Slider(
                    minimum=0.0, maximum=1.0, value=0.1, step=0.05,
                    label="Remasking Temp (for confidence algs)"
                )

            with gr.Row():
                top_p = gr.Slider(
                    minimum=0.0, maximum=1.0, value=0.95, step=0.05,
                    label="Top-P (0=disabled)"
                )
                top_k = gr.Slider(
                    minimum=0, maximum=200, value=0, step=5,
                    label="Top-K (0=disabled)"
                )

            with gr.Row():
                 remasking_strategy = gr.Radio(
                    choices=['origin', 'maskgit_plus', 'topk_margin', 'entropy'],
                    value='entropy', # Default to entropy as in example
                    label="Remasking Strategy (Algorithm)"
                )

            with gr.Row():
                visualization_delay = gr.Slider(
                    minimum=0.0, maximum=0.5, value=0.02, step=0.01, # Faster default
                    label="Visualization Delay (seconds)"
                )

        # Clear button
        clear_btn = gr.Button("Clear Conversation")

        # Current response text box (hidden, maybe useful for debugging)
        # current_response = gr.Textbox(visible=False)

        # --- Event Handlers ---

        def add_user_message_to_history(message: str, history: List[List[Optional[str]]]):
            """Adds user message, clears input, prepares for bot response."""
            if not message.strip():
                gr.Warning("Please enter a message.")
                return history, history, "", [("Enter a message", "grey")] # Keep vis empty or show prompt

            # Add user message with placeholder for bot response
            history.append([message, None])
            # Return updated history for chatbot, empty input box, empty visualization
            return history, history, "", []


        def clear_conversation():
            """Clears the chat history and visualization."""
            return [], [], "", []

        # --- Connect UI elements ---

        # Define the inputs for the generation function once
        generation_inputs = [
            chat_history, gen_length, steps, constraints_input,
            temperature, top_p, top_k, remasking_strategy, alg_temp,
            visualization_delay
        ]
        # Define the outputs for the generation function
        generation_outputs = [chatbot_ui, output_vis]

        # Handle Textbox Submission (Enter key)
        submit_listener = user_input.submit(
            fn=add_user_message_to_history,
            inputs=[user_input, chat_history],
            outputs=[chat_history, chatbot_ui, user_input, output_vis] # Step 1: Add user msg
        )
        # Chain the bot response generation after the user message is added
        submit_listener.then(
            fn=generate_dream_response,
            inputs=generation_inputs,
            outputs=generation_outputs # Step 2: Generate response and stream vis
        )

        # Handle Send Button Click
        click_listener = send_btn.click(
            fn=add_user_message_to_history,
            inputs=[user_input, chat_history],
            outputs=[chat_history, chatbot_ui, user_input, output_vis] # Step 1: Add user msg
        )
        # Chain the bot response generation after the user message is added
        click_listener.then(
            fn=generate_dream_response,
            inputs=generation_inputs,
            outputs=generation_outputs # Step 2: Generate response and stream vis
        )

        # Clear Button Action remains the same
        clear_btn.click(
            clear_conversation,
            inputs=[],
            outputs=[chat_history, chatbot_ui, user_input, output_vis]
        )

    return demo

# --- Launch ---
if __name__ == "__main__":
    demo = create_chatbot_demo()
    # Use queue for handling multiple users and streaming
    demo.queue().launch(debug=True, share=True) # Add share=True for public link if needed