multimodalart HF Staff commited on
Commit
c691b46
·
verified ·
1 Parent(s): e0c2bd3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +611 -0
app.py ADDED
@@ -0,0 +1,611 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # llada_app.py -> dream_app.py
2
+
3
+ import torch
4
+ import numpy as np
5
+ import gradio as gr
6
+ import spaces
7
+ # import torch.nn.functional as F # Not needed for DREAM's basic visualization
8
+ from transformers import AutoTokenizer, AutoModel
9
+ import time
10
+ import re # Keep for parsing constraints
11
+
12
+ # Use try-except for space deployment vs local
13
+ try:
14
+ # Used for spaces deployment with GPU
15
+ gpu_check = spaces.GPU
16
+ print("Running in Gradio Spaces with GPU environment.")
17
+ except AttributeError:
18
+ # Fallback for local execution or environments without spaces.GPU
19
+ print("Running in local environment or without spaces.GPU.")
20
+ # Define a dummy decorator if spaces.GPU is not available
21
+ def gpu_check(func):
22
+ return func
23
+
24
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
25
+ print(f"Using device: {device}")
26
+
27
+ # --- Load DREAM Model and Tokenizer ---
28
+ model_path = "Dream-org/Dream-v0-Instruct-7B"
29
+ print(f"Loading model: {model_path}")
30
+ model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
31
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
32
+ print("Model and tokenizer loaded.")
33
+
34
+ # --- Constants for DREAM ---
35
+ # Find the mask token and ID from the DREAM tokenizer
36
+ if tokenizer.mask_token is None:
37
+ # Handle cases where a mask token might not be explicitly set
38
+ # You might need to choose a suitable placeholder or investigate further
39
+ # For now, let's try adding one if it's missing and check its id
40
+ # This is speculative and might depend on the specific tokenizer setup
41
+ print("Warning: Mask token not found in tokenizer. Attempting to add.")
42
+ tokenizer.add_special_tokens({'mask_token': '[MASK]'})
43
+ model.resize_token_embeddings(len(tokenizer)) # Important if vocab size changed
44
+ if tokenizer.mask_token is None:
45
+ raise ValueError("Could not set a mask token for the tokenizer.")
46
+
47
+ MASK_TOKEN = tokenizer.mask_token
48
+ MASK_ID = tokenizer.mask_token_id
49
+ print(f"Using MASK_TOKEN='{MASK_TOKEN}' with ID={MASK_ID}")
50
+ # --- Helper Functions (Constraint Parsing, History Formatting) ---
51
+
52
+ def parse_constraints(constraints_text):
53
+ """Parse constraints in format: 'position:word, position:word, ...'"""
54
+ constraints = {}
55
+ if not constraints_text:
56
+ return constraints
57
+
58
+ parts = constraints_text.split(',')
59
+ for part in parts:
60
+ part = part.strip() # Trim whitespace
61
+ if ':' not in part:
62
+ continue
63
+ try:
64
+ pos_str, word = part.split(':', 1)
65
+ pos = int(pos_str.strip())
66
+ word = word.strip()
67
+ # Allow empty words if needed, but usually we want a word
68
+ if word and pos >= 0:
69
+ constraints[pos] = word
70
+ except ValueError:
71
+ print(f"Warning: Could not parse constraint part: '{part}'")
72
+ continue
73
+
74
+ return constraints
75
+
76
+ def format_chat_history(history):
77
+ """
78
+ Format chat history for the DREAM model (standard messages format)
79
+
80
+ Args:
81
+ history: List of [user_message, assistant_message] pairs
82
+
83
+ Returns:
84
+ Formatted conversation for the model (list of dictionaries)
85
+ """
86
+ messages = []
87
+ # Add system prompt if desired (check DREAM examples/recommendations)
88
+ # messages.append({"role": "system", "content": "You are a helpful assistant."}) # Optional
89
+ for user_msg, assistant_msg in history:
90
+ if user_msg: # Handle potential None message if clearing failed
91
+ messages.append({"role": "user", "content": user_msg})
92
+ if assistant_msg: # Skip if None (for the latest user message awaiting response)
93
+ messages.append({"role": "assistant", "content": assistant_msg})
94
+
95
+ return messages
96
+
97
+ # --- Core Generation Logic for DREAM with Visualization ---
98
+
99
+ @gpu_check # Use the potentially dummy decorator
100
+ def dream_generate_response_with_visualization(
101
+ messages,
102
+ gen_length=64,
103
+ steps=64, # Default based on DREAM examples
104
+ constraints=None,
105
+ temperature=0.6, # Default based on DREAM examples
106
+ top_p=0.95, # Default based on DREAM examples
107
+ alg="entropy", # Default based on DREAM examples
108
+ alg_temp=0.0, # Default based on DREAM examples
109
+ ):
110
+ """
111
+ Generate text with DREAM model with visualization using the generation hook.
112
+
113
+ Args:
114
+ messages: List of message dictionaries with 'role' and 'content'
115
+ gen_length: Length of text to generate (max_new_tokens)
116
+ steps: Number of diffusion steps
117
+ constraints: Dictionary mapping positions (relative to response start) to words
118
+ temperature: Sampling temperature
119
+ top_p: Nucleus sampling p
120
+ alg: Remasking algorithm ('origin', 'maskgit_plus', 'topk_margin', 'entropy')
121
+ alg_temp: Temperature for confidence-based algorithms
122
+
123
+ Returns:
124
+ Tuple: (List of visualization states, final generated text string)
125
+ """
126
+ print("--- Starting DREAM Generation ---")
127
+ print(f"Parameters: gen_length={gen_length}, steps={steps}, temperature={temperature}, top_p={top_p}, alg='{alg}', alg_temp={alg_temp}")
128
+ print(f"Constraints: {constraints}")
129
+
130
+ # --- Input Preparation ---
131
+ if constraints is None:
132
+ constraints = {}
133
+
134
+ # Convert word constraints to token IDs (handle multi-token words)
135
+ processed_constraints = {}
136
+ print("Processing constraints:")
137
+ for pos, word in constraints.items():
138
+ # Prepend space for consistent tokenization, similar to LLaDA example
139
+ tokens = tokenizer.encode(" " + word, add_special_tokens=False)
140
+ if not tokens:
141
+ print(f" Warning: Could not tokenize constraint word '{word}' at position {pos}. Skipping.")
142
+ continue
143
+ print(f" Pos {pos}, Word '{word}' -> Tokens {tokens}")
144
+ for i, token_id in enumerate(tokens):
145
+ # Ensure we don't overwrite parts of multi-token constraints accidentally
146
+ if pos + i not in processed_constraints:
147
+ processed_constraints[pos + i] = token_id
148
+ else:
149
+ print(f" Warning: Overlapping constraint at position {pos+i}. Keeping first.")
150
+
151
+ # Prepare the prompt using chat template
152
+ # Note: DREAM examples use add_generation_prompt=True
153
+ try:
154
+ inputs = tokenizer.apply_chat_template(
155
+ messages,
156
+ return_tensors="pt",
157
+ return_dict=True,
158
+ add_generation_prompt=True # Crucial for instruction-tuned models like Dream-Instruct
159
+ )
160
+ input_ids = inputs.input_ids.to(device=device)
161
+ attention_mask = inputs.attention_mask.to(device=device) # Get attention mask
162
+ prompt_length = input_ids.shape[1]
163
+ print(f"Input prompt length: {prompt_length}")
164
+ print(f"Input IDs: {input_ids}")
165
+ except Exception as e:
166
+ print(f"Error applying chat template: {e}")
167
+ # Provide a fallback or raise the error
168
+ # Fallback: Simple concatenation (less ideal for instruction models)
169
+ # chat_input = "".join([f"{msg['role']}: {msg['content']}\n" for msg in messages]) + "assistant:"
170
+ # input_ids = tokenizer(chat_input, return_tensors="pt").input_ids.to(device)
171
+ # attention_mask = torch.ones_like(input_ids)
172
+ # prompt_length = input_ids.shape[1]
173
+ # print(f"Warning: Using basic concatenation due to template error. Prompt length: {prompt_length}")
174
+ return [([("Error applying chat template.", "red")],)], f"Error: {e}"
175
+
176
+
177
+ if prompt_length + gen_length > 2048: # Check context length (DREAM uses 2048)
178
+ print(f"Warning: Requested length ({prompt_length + gen_length}) exceeds model max length (2048). Truncating gen_length.")
179
+ gen_length = 2048 - prompt_length
180
+ if gen_length <= 0:
181
+ print("Error: Prompt is already too long.")
182
+ return [([("Prompt too long.", "red")],)], "Error: Prompt too long."
183
+
184
+
185
+ # --- State for Visualization Hook ---
186
+ visualization_states = []
187
+ last_x = None # Store the sequence from the previous step
188
+
189
+ # Initial state: Prompt + all masks
190
+ initial_x_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
191
+ # Apply initial constraints to the masked part *before* showing the first state
192
+ for pos, token_id in processed_constraints.items():
193
+ absolute_pos = pos # Position relative to start of generation
194
+ if 0 <= absolute_pos < gen_length:
195
+ initial_x_part[0, absolute_pos] = token_id
196
+
197
+ initial_state_vis = []
198
+ for i in range(gen_length):
199
+ token_id = initial_x_part[0, i].item()
200
+ if token_id == MASK_ID:
201
+ initial_state_vis.append((MASK_TOKEN, "#444444")) # Mask color
202
+ else:
203
+ # This must be a constraint applied initially
204
+ token_str = tokenizer.decode([token_id], skip_special_tokens=True)
205
+ initial_state_vis.append((token_str if token_str else "?", "#800080")) # Constraint color (purple)
206
+ visualization_states.append(initial_state_vis)
207
+
208
+ # --- Define the Hook Function ---
209
+ def generation_tokens_hook_func(step, x, logits):
210
+ nonlocal last_x, visualization_states # Allow modification of outer scope variables
211
+ print(f"Hook called for step {step}")
212
+
213
+ current_x = x.clone() # Work on a copy for comparison
214
+
215
+ # 1. Apply Constraints *before* generating visualization
216
+ # Constraints are relative to the start of the *generated* part
217
+ constrained_x = current_x.clone()
218
+ prompt_len = current_x.shape[1] - gen_length # Recalculate just in case
219
+ if prompt_len < 0:
220
+ print("Warning: prompt_len negative in hook, skipping constraints/vis.")
221
+ return current_x # Return unmodified if something is wrong
222
+
223
+ constraints_applied_this_step = False
224
+ for pos, token_id in processed_constraints.items():
225
+ absolute_pos = prompt_len + pos
226
+ if prompt_len <= absolute_pos < current_x.shape[1]:
227
+ if constrained_x[0, absolute_pos] != token_id:
228
+ constrained_x[0, absolute_pos] = token_id
229
+ constraints_applied_this_step = True
230
+ # print(f" Constraint applied at pos {pos} ({absolute_pos}) -> token {token_id}")
231
+
232
+
233
+ # 2. Generate Visualization State for *this* step
234
+ current_state_vis = []
235
+ # Compare current_x (before explicit constraint application in *this* hook call)
236
+ # with last_x (state from *previous* hook call / initial state)
237
+ # Generate based on the state *before* reapplying constraints here,
238
+ # but *after* the model's diffusion step determined current_x.
239
+ gen_part_current = current_x[0, prompt_len:]
240
+ gen_part_last = last_x[0, prompt_len:] if last_x is not None else None
241
+
242
+ for i in range(gen_length):
243
+ current_token_id = gen_part_current[i].item()
244
+ token_str = tokenizer.decode([current_token_id], skip_special_tokens=True).strip()
245
+ # Use a placeholder if decoding results in empty string
246
+ display_token = token_str if token_str else MASK_TOKEN if current_token_id == MASK_ID else "?"
247
+
248
+ # Check if this position is constrained
249
+ is_constrained = i in processed_constraints
250
+
251
+ if current_token_id == MASK_ID:
252
+ color = "#444444" # Dark Gray for masks
253
+ elif is_constrained and processed_constraints[i] == current_token_id:
254
+ color = "#800080" # Purple for correctly constrained tokens
255
+ elif gen_part_last is None or gen_part_last[i].item() == MASK_ID:
256
+ # Newly revealed (was mask in previous step or initial state)
257
+ color = "#66CC66" # Light Green
258
+ else:
259
+ # Previously revealed and not masked
260
+ color = "#6699CC" # Light Blue
261
+
262
+ current_state_vis.append((display_token, color))
263
+
264
+ visualization_states.append(current_state_vis)
265
+
266
+ # 3. Update last_x for the *next* step's comparison
267
+ # Store the state *after* applying constraints for accurate comparison next time
268
+ last_x = constrained_x.clone()
269
+
270
+ # 4. Return the sequence with constraints applied for the model's next step
271
+ # print(f"Hook returning constrained_x: {constrained_x[:, prompt_len:]}")
272
+ return constrained_x # Return the sequence with constraints enforced
273
+
274
+
275
+ # --- Run DREAM Generation ---
276
+ try:
277
+ print("Calling model.diffusion_generate...")
278
+ # Make sure last_x is initialized correctly before the first hook call
279
+ # It should represent the state *before* the first diffusion step.
280
+ initial_full_x = torch.cat([input_ids, initial_x_part], dim=1)
281
+ last_x = initial_full_x.clone()
282
+
283
+ output = model.diffusion_generate(
284
+ input_ids,
285
+ attention_mask=attention_mask,
286
+ max_new_tokens=gen_length,
287
+ output_history=False, # We build history in the hook
288
+ return_dict_in_generate=True,
289
+ steps=steps,
290
+ temperature=temperature,
291
+ top_p=top_p,
292
+ alg=alg,
293
+ alg_temp=alg_temp if alg != "origin" else 0.0, # alg_temp only for confidence algs
294
+ generation_tokens_hook_func=generation_tokens_hook_func
295
+ )
296
+ print("model.diffusion_generate finished.")
297
+
298
+ # Extract final generated sequence (response part only)
299
+ # The hook ensures the returned sequence has constraints applied
300
+ final_sequence = output.sequences[0]
301
+ response_token_ids = final_sequence[prompt_length:]
302
+
303
+ # Decode the final response
304
+ final_text = tokenizer.decode(
305
+ response_token_ids,
306
+ skip_special_tokens=True,
307
+ clean_up_tokenization_spaces=True # Recommended for cleaner output
308
+ ).strip()
309
+ print(f"Final generated text: {final_text}")
310
+
311
+ # Add the very final state to visualization if the hook didn't capture it
312
+ # (Should be captured, but as a safeguard)
313
+ if len(visualization_states) <= steps: # Hook might run 'steps' times
314
+ final_state_vis = []
315
+ final_gen_part = final_sequence[prompt_length:]
316
+ for i in range(gen_length):
317
+ token_id = final_gen_part[i].item()
318
+ token_str = tokenizer.decode([token_id], skip_special_tokens=True).strip()
319
+ display_token = token_str if token_str else MASK_TOKEN if token_id == MASK_ID else "?"
320
+ is_constrained = i in processed_constraints
321
+
322
+ if token_id == MASK_ID: color = "#444444"
323
+ elif is_constrained and processed_constraints[i] == token_id: color = "#800080"
324
+ else: color = "#6699CC" # Default to blue for final state tokens
325
+ final_state_vis.append((display_token, color))
326
+ visualization_states.append(final_state_vis)
327
+
328
+
329
+ except Exception as e:
330
+ print(f"Error during generation: {e}")
331
+ import traceback
332
+ traceback.print_exc()
333
+ # Add error message to visualization
334
+ error_msg = f"Error during generation: {str(e)}"
335
+ visualization_states.append([("Error", "red")])
336
+ final_text = f"Generation failed: {e}"
337
+
338
+ print("--- DREAM Generation Finished ---")
339
+ return visualization_states, final_text
340
+
341
+
342
+ # --- Gradio UI Setup ---
343
+
344
+ css = '''
345
+ .category-legend{display:none}
346
+ /* button{height: 60px} */ /* Optional: Adjust button height */
347
+ .small_btn {
348
+ max-width: 100px; /* Adjust as needed */
349
+ height: 40px; /* Adjust as needed */
350
+ flex-grow: 0; /* Prevent button from growing */
351
+ margin-left: 5px; /* Add some space */
352
+ }
353
+ .chat-input-row {
354
+ display: flex;
355
+ align-items: center; /* Vertically align items */
356
+ }
357
+ .chat-input-row > * {
358
+ margin-right: 5px; /* Space between textbox and button */
359
+ }
360
+ .chat-input-row > *:last-child {
361
+ margin-right: 0;
362
+ }
363
+ '''
364
+ def create_chatbot_demo():
365
+ with gr.Blocks(css=css) as demo:
366
+ gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
367
+ gr.Markdown("A demonstration of the Dream 7B diffusion-based language model. Watch the text generate step-by-step.")
368
+ gr.Markdown("[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B) - [Blog Post](https://hkunlp.github.io/blog/2025/dream/)")
369
+
370
+ # STATE MANAGEMENT
371
+ chat_history = gr.State([])
372
+
373
+ # UI COMPONENTS
374
+ with gr.Row():
375
+ with gr.Column(scale=3):
376
+ chatbot_ui = gr.Chatbot(
377
+ label="Conversation",
378
+ height=500,
379
+ bubble_full_width=False # Improves layout for shorter messages
380
+ )
381
+
382
+ # Message input Row
383
+ with gr.Row(elem_classes="chat-input-row"):
384
+ user_input = gr.Textbox(
385
+ label="Your Message",
386
+ placeholder="Type your message here and press Enter...",
387
+ scale=4, # Give textbox more space
388
+ container=False, # Remove container background/padding
389
+ show_label=False
390
+ )
391
+ send_btn = gr.Button("Send", scale=1, elem_classes="small_btn")
392
+
393
+ constraints_input = gr.Textbox(
394
+ label="Word Constraints (Optional)",
395
+ info="Force specific words at positions (0-indexed from response start). Format: 'pos:word, pos:word'. Example: '0:Once, 5:upon, 10:time'",
396
+ placeholder="e.g., 0:Hello, 6:world",
397
+ value="" # Default empty
398
+ )
399
+ with gr.Column(scale=2):
400
+ output_vis = gr.HighlightedText(
401
+ label="Denoising Process Visualization",
402
+ combine_adjacent=False,
403
+ show_legend=False, # Keep legend off as requested
404
+ # Color map for legend (though hidden)
405
+ # color_map={
406
+ # "Mask": "#444444",
407
+ # "New": "#66CC66",
408
+ # "Old": "#6699CC",
409
+ # "Constraint": "#800080",
410
+ # "Error": "red"
411
+ # }
412
+ )
413
+ gr.Markdown(
414
+ "**Color Legend:** <span style='color:#444444'>■ Mask</span> | <span style='color:#66CC66'>■ Newly Generated</span> | <span style='color:#6699CC'>■ Previously Generated</span> | <span style='color:#800080'>■ Constraint</span>"
415
+ )
416
+
417
+
418
+ # Advanced generation settings
419
+ with gr.Accordion("Generation Settings", open=False):
420
+ with gr.Row():
421
+ gen_length = gr.Slider(
422
+ minimum=16, maximum=512, value=128, step=8, # Increased max length
423
+ label="Max New Tokens"
424
+ )
425
+ steps = gr.Slider(
426
+ minimum=8, maximum=512, value=128, step=8, # Increased max steps
427
+ label="Diffusion Steps"
428
+ )
429
+ with gr.Row():
430
+ temperature = gr.Slider(
431
+ minimum=0.0, maximum=1.5, value=0.6, step=0.05, # Wider range for temp
432
+ label="Temperature"
433
+ )
434
+ top_p = gr.Slider(
435
+ minimum=0.0, maximum=1.0, value=0.95, step=0.05,
436
+ label="Top-P (Nucleus Sampling)"
437
+ )
438
+ with gr.Row():
439
+ # Map UI choices to DREAM's alg parameters
440
+ remasking_strategy = gr.Radio(
441
+ choices=[
442
+ ("Random", "origin"), # User friendly name -> actual param
443
+ ("Entropy", "entropy"),
444
+ ("MaskGit+", "maskgit_plus"),
445
+ ("TopK Margin", "topk_margin"),
446
+ ],
447
+ value="entropy", # Default
448
+ label="Generation Order Strategy (alg)"
449
+ )
450
+ alg_temp = gr.Slider(
451
+ minimum=0.0, maximum=1.0, value=0.1, step=0.05,
452
+ label="Order Randomness (alg_temp)" ,
453
+ info="Adds randomness to non-Random strategies. Ignored for Random."
454
+ )
455
+
456
+ with gr.Row():
457
+ visualization_delay = gr.Slider(
458
+ minimum=0.0, maximum=0.5, value=0.05, step=0.01,
459
+ label="Visualization Delay (seconds)"
460
+ )
461
+
462
+ # Clear button
463
+ clear_btn = gr.Button("Clear Conversation")
464
+
465
+ # Hidden textbox to potentially store intermediate response (might not be needed)
466
+ # current_response = gr.Textbox(visible=False)
467
+
468
+ # --- Event Handlers ---
469
+
470
+ # Helper to add message to history state
471
+ def add_message_to_history(history, message, response):
472
+ history = history.copy() # Modify copy
473
+ history.append([message, response])
474
+ return history
475
+
476
+ # Function when user submits message (Enter or Send button)
477
+ def user_message_submitted(message, history):
478
+ print(f"User submitted: '{message}'")
479
+ if not message or not message.strip():
480
+ print("Empty message submitted, doing nothing.")
481
+ # Return unchanged state if message is empty
482
+ # Need to return values for all outputs of the .submit/.click
483
+ return history, history, "", [] # history, chatbot_ui, user_input, output_vis
484
+
485
+ # Add user message to history (with None for bot response initially)
486
+ history = add_message_to_history(history, message, None)
487
+
488
+ # Prepare updated history for display in Chatbot UI
489
+ history_for_display = history.copy()
490
+
491
+ # Clear the input textbox
492
+ message_out = ""
493
+ # Clear the visualization
494
+ vis_clear = []
495
+
496
+ # Return updated history state, chatbot display, cleared input, cleared visualization
497
+ return history, history_for_display, message_out, vis_clear
498
+
499
+ # Function to generate bot response (triggered after user message is processed)
500
+ def bot_response_generator(
501
+ history, gen_length, steps, constraints_text, delay,
502
+ temperature, top_p, alg, alg_temp
503
+ ):
504
+ print("--- Generating Bot Response ---")
505
+ if not history or history[-1][1] is not None:
506
+ print("History empty or last message already has response. Skipping generation.")
507
+ # Yield current state if called unnecessarily
508
+ yield history, [], "No response generated."
509
+ return
510
+
511
+ # Get the conversation history in the format the model expects
512
+ messages = format_chat_history(history) # Includes the latest user query
513
+
514
+ # Parse constraints from the textbox
515
+ parsed_constraints = parse_constraints(constraints_text)
516
+
517
+ try:
518
+ # Generate response with visualization
519
+ vis_states, response_text = dream_generate_response_with_visualization(
520
+ messages,
521
+ gen_length=gen_length,
522
+ steps=steps,
523
+ constraints=parsed_constraints,
524
+ temperature=temperature,
525
+ top_p=top_p,
526
+ alg=alg,
527
+ alg_temp=alg_temp
528
+ )
529
+
530
+ # Update the history state with the final bot response
531
+ history[-1][1] = response_text.strip()
532
+
533
+ # Yield the initial visualization state immediately
534
+ if vis_states:
535
+ yield history, vis_states[0] # Update chatbot, update visualization
536
+ else:
537
+ # Handle case where generation failed before first state
538
+ yield history, [("Generation failed.", "red")]
539
+
540
+ # Then animate through the rest of the visualization states
541
+ for state in vis_states[1:]:
542
+ time.sleep(delay)
543
+ yield history, state # Update chatbot (implicitly via history), update visualization
544
+
545
+ except Exception as e:
546
+ print(f"Error in bot_response_generator: {e}")
547
+ import traceback
548
+ traceback.print_exc()
549
+ error_msg = f"Error: {str(e)}"
550
+ # Show error in visualization
551
+ error_vis = [(error_msg, "red")]
552
+ # Update history with error message? Optional.
553
+ # history[-1][1] = error_msg
554
+ yield history, error_vis
555
+
556
+ # Function to clear everything
557
+ def clear_conversation():
558
+ print("Clearing conversation.")
559
+ return [], [], "", [] # chat_history, chatbot_ui, user_input, output_vis
560
+
561
+ # --- Wire UI elements to functions ---
562
+
563
+ # Typing in Textbox and pressing Enter
564
+ user_input.submit(
565
+ fn=user_message_submitted,
566
+ inputs=[user_input, chat_history],
567
+ outputs=[chat_history, chatbot_ui, user_input, output_vis], # Update history state, chatbot display, clear input, clear vis
568
+ queue=False # Process immediately
569
+ ).then(
570
+ fn=bot_response_generator,
571
+ inputs=[
572
+ chat_history, gen_length, steps, constraints_input, visualization_delay,
573
+ temperature, top_p, remasking_strategy, alg_temp
574
+ ],
575
+ outputs=[chatbot_ui, output_vis] # Update chatbot display (with new response), update visualization
576
+ # Note: history state is updated implicitly by bot_response_generator modifying its input
577
+ )
578
+
579
+ # Clicking the Send button
580
+ send_btn.click(
581
+ fn=user_message_submitted,
582
+ inputs=[user_input, chat_history],
583
+ outputs=[chat_history, chatbot_ui, user_input, output_vis],
584
+ queue=False
585
+ ).then(
586
+ fn=bot_response_generator,
587
+ inputs=[
588
+ chat_history, gen_length, steps, constraints_input, visualization_delay,
589
+ temperature, top_p, remasking_strategy, alg_temp
590
+ ],
591
+ outputs=[chatbot_ui, output_vis]
592
+ )
593
+
594
+ # Clicking the Clear button
595
+ clear_btn.click(
596
+ fn=clear_conversation,
597
+ inputs=[],
598
+ outputs=[chat_history, chatbot_ui, user_input, output_vis],
599
+ queue=False
600
+ )
601
+
602
+ return demo
603
+
604
+ # --- Launch the Gradio App ---
605
+ if __name__ == "__main__":
606
+ print("Creating Gradio demo...")
607
+ demo = create_chatbot_demo()
608
+ print("Launching Gradio demo...")
609
+ # Use queue for potentially long generation times
610
+ # share=True generates a public link (useful for Colab/Spaces)
611
+ demo.queue().launch(share=True, debug=True) # Add debug=True for more logs