File size: 25,534 Bytes
ce90309
47fc4a0
ce90309
47fc4a0
f4ff30a
168a7c1
825e87d
47fc4a0
f4ff30a
 
4474e7a
 
 
fb0307e
4474e7a
3d09f97
4474e7a
 
 
3d09f97
 
 
4474e7a
 
3d09f97
fb0307e
4474e7a
3d09f97
4474e7a
 
3d09f97
 
 
fb0307e
3d09f97
4474e7a
3d09f97
4474e7a
3d09f97
 
 
 
 
badae07
 
4474e7a
 
3d09f97
 
f4ff30a
 
168a7c1
 
f4ff30a
168a7c1
f4ff30a
825e87d
 
fb0307e
4474e7a
fb0307e
f4ff30a
 
 
825e87d
fb0307e
 
 
 
f4ff30a
4474e7a
 
 
fb0307e
 
 
4474e7a
fb0307e
f4ff30a
47fc4a0
fb0307e
47fc4a0
 
2491cbe
fb0307e
825e87d
47fc4a0
 
2491cbe
badae07
3d09f97
fb0307e
 
 
 
f4ff30a
47fc4a0
3d09f97
47fc4a0
4474e7a
fb0307e
 
4474e7a
fb0307e
4474e7a
3d09f97
4474e7a
3d09f97
 
 
4474e7a
 
 
f4ff30a
 
fb0307e
 
f4ff30a
3d09f97
f4ff30a
 
 
 
 
 
 
 
 
3d09f97
badae07
825e87d
3d09f97
 
f4ff30a
 
 
3d09f97
badae07
f4ff30a
825e87d
3d09f97
f4ff30a
3d09f97
f4ff30a
 
3d09f97
825e87d
 
badae07
3d09f97
f4ff30a
 
3d09f97
 
f4ff30a
 
badae07
2491cbe
4474e7a
2491cbe
f4ff30a
4474e7a
 
 
3d09f97
4474e7a
 
3d09f97
1321d2f
3d09f97
1321d2f
3d09f97
1321d2f
badae07
 
3d09f97
2491cbe
3d09f97
4474e7a
3d09f97
 
badae07
4474e7a
3d09f97
badae07
3d09f97
 
4474e7a
 
 
 
 
3d09f97
 
 
4474e7a
3d09f97
 
4474e7a
 
 
 
 
 
badae07
3d09f97
 
 
4474e7a
3d09f97
4474e7a
1321d2f
3d09f97
4474e7a
fb0307e
4474e7a
 
3d09f97
4474e7a
badae07
4474e7a
 
 
3d09f97
 
 
 
4474e7a
 
 
 
1321d2f
2491cbe
3d09f97
 
2491cbe
badae07
fb0307e
3d09f97
badae07
3d09f97
 
 
d07e660
 
fb0307e
3d09f97
 
fb0307e
badae07
3d09f97
 
 
 
fb0307e
3d09f97
4474e7a
3d09f97
 
4474e7a
 
 
1321d2f
4474e7a
3d09f97
4474e7a
 
badae07
3d09f97
1321d2f
 
 
 
 
fb0307e
1321d2f
 
 
2491cbe
badae07
3d09f97
4474e7a
3d09f97
 
 
 
 
4474e7a
825e87d
 
f4ff30a
9b91020
4474e7a
 
825e87d
3d09f97
 
 
ce90309
4474e7a
 
3d09f97
f4ff30a
3d09f97
 
 
 
 
 
 
 
 
 
 
 
 
 
4474e7a
47fc4a0
4474e7a
1321d2f
 
4474e7a
3d09f97
 
 
 
4474e7a
f4ff30a
 
2491cbe
47fc4a0
 
f4ff30a
47fc4a0
 
168a7c1
ce90309
168a7c1
 
fb0307e
168a7c1
47fc4a0
3d09f97
47fc4a0
 
 
3d09f97
825e87d
 
3d09f97
825e87d
f4ff30a
4474e7a
f4ff30a
ce90309
 
47fc4a0
fb0307e
 
47fc4a0
f4ff30a
47fc4a0
f4ff30a
fb0307e
 
47fc4a0
 
 
3d09f97
 
47fc4a0
3d09f97
47fc4a0
ce90309
fb0307e
badae07
 
 
 
 
 
 
3c422aa
 
badae07
 
 
2491cbe
47fc4a0
ce90309
47fc4a0
3d09f97
2491cbe
3d09f97
 
 
f4ff30a
 
3d09f97
 
 
 
 
fb0307e
 
3d09f97
 
2491cbe
 
f4ff30a
3d09f97
 
5807c79
3d09f97
 
5807c79
 
 
3d09f97
 
 
2491cbe
3d09f97
5807c79
3d09f97
 
 
 
 
5807c79
3d09f97
 
3c422aa
5807c79
 
3d09f97
5807c79
3d09f97
 
 
 
 
5807c79
3c422aa
3d09f97
3c422aa
5807c79
 
3d09f97
47fc4a0
3d09f97
47fc4a0
3d09f97
 
825e87d
 
47fc4a0
 
f4ff30a
47fc4a0
ce90309
fb0307e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# dream_app.py
import torch
import numpy as np
import gradio as gr
import spaces # Ensure spaces is installed if needed for GPU decorator
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, AutoConfig
import time
import re
from typing import List, Dict, Tuple, Optional
import torch.distributions as dists # Added import

# --- START: Copied Helper functions from generation_utils.py ---
# [Keep the copied functions: top_p_logits, top_k_logits, sample_tokens]
def top_p_logits(logits, top_p=None):
    if top_p is None or top_p >= 1.0: return logits
    sorted_logits, sorted_indices = torch.sort(logits, descending=True)
    cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
    sorted_indices_to_remove = cumulative_probs > top_p
    sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone(); sorted_indices_to_remove[..., 0] = 0
    mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device).scatter_(-1, sorted_indices, sorted_indices_to_remove)
    return logits.masked_fill(mask, torch.finfo(logits.dtype).min)

def top_k_logits(logits, top_k=None):
    if top_k is None or top_k <= 0: return logits
    top_k = min(top_k, logits.size(-1))
    indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
    return logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)

def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
    if temperature > 0: safe_temp = max(temperature, 1e-6); logits = logits / safe_temp
    if top_p is not None and 0.0 < top_p < 1.0: logits = top_p_logits(logits, top_p)
    if top_k is not None and top_k > 0: logits = top_k_logits(logits, top_k)
    is_all_neg_inf = torch.all(logits == torch.finfo(logits.dtype).min, dim=-1, keepdim=True)
    if torch.any(is_all_neg_inf): uniform_logits = torch.zeros_like(logits); logits = torch.where(is_all_neg_inf, uniform_logits, logits)
    probs = torch.softmax(logits, dim=-1)
    probs = torch.clamp(probs, min=0.0); probs = probs / probs.sum(dim=-1, keepdim=True); probs = torch.nan_to_num(probs, nan=0.0)
    if temperature > 0:
        try: x0 = dists.Categorical(probs=probs).sample(); confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
        except Exception as e: print(f"Warning: Sampling failed: {e}. Argmax fallback."); confidence, x0 = probs.max(dim=-1)
    else: confidence, x0 = probs.max(dim=-1)
    if margin_confidence: sorted_probs, _ = torch.sort(probs, dim=-1, descending=True); top1_probs = sorted_probs[..., 0]; top2_probs = sorted_probs[..., 1] if sorted_probs.shape[-1] > 1 else top1_probs; confidence = top1_probs - top2_probs
    if neg_entropy: epsilon = 1e-10; log_probs = torch.log(probs + epsilon); confidence = torch.sum(probs * log_probs, dim=-1)
    confidence = torch.nan_to_num(confidence, nan=0.0)
    return confidence, x0
# --- END: Copied Helper functions ---

# [Keep model loading, constants as before]
# Load model configuration to get special token IDs
config = AutoConfig.from_pretrained("Dream-org/Dream-v0-Instruct-7B", trust_remote_code=True)
model_path = "Dream-org/Dream-v0-Instruct-7B"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
print("Loading model...")
model = AutoModel.from_pretrained(
    model_path,
    torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32,
    trust_remote_code=True,
    attn_implementation="sdpa"
)
model = model.to(device).eval()
print("Model loaded.")
MASK_TOKEN = tokenizer.mask_token
MASK_ID = tokenizer.mask_token_id
PAD_ID = tokenizer.pad_token_id
EOS_ID = tokenizer.eos_token_id
if MASK_ID is None: raise ValueError("Cannot determine MASK_ID.")
SPECIAL_TOKEN_IDS = {PAD_ID, EOS_ID, MASK_ID}
try:
    IM_START_ID = tokenizer.convert_tokens_to_ids("<|im_start|>")
    IM_END_ID = tokenizer.convert_tokens_to_ids("<|im_end|>")
    SPECIAL_TOKEN_IDS.add(IM_START_ID)
    SPECIAL_TOKEN_IDS.add(IM_END_ID)
except KeyError: IM_START_ID, IM_END_ID = None, None

# --- Helper Functions ---
def parse_constraints(constraints_text: str) -> Dict[int, List[int]]:
    constraints = {}
    if not constraints_text: return constraints
    parts = constraints_text.split(',')
    for part in parts:
        part = part.strip()
        if ':' not in part: continue
        pos_str, word = part.split(':', 1)
        try:
            pos = int(pos_str.strip())
            word = word.strip()
            token_ids = []
            if word: text_to_encode = (" " + word) if (pos > 0 and not word.startswith(" ")) else word; token_ids = tokenizer.encode(text_to_encode, add_special_tokens=False)
            if token_ids and pos >= 0: constraints[pos] = token_ids
            elif not token_ids and word: print(f"Warning: Could not tokenize constraint word '{word}'")
        except ValueError: print(f"Warning: Invalid position '{pos_str}' in constraint part '{part}'")
        except Exception as e: print(f"Warning: Error processing constraint '{part}': {e}")
    return constraints

# Removed format_chat_history as history will be in the correct format

def apply_constraints_to_state(
    x: torch.Tensor, prompt_length: int, total_length: int,
    parsed_constraints: Dict[int, List[int]], current_step: Optional[int] = None
) -> torch.Tensor:
    modified_x = x.clone()
    for rel_pos, word_token_ids in parsed_constraints.items():
        abs_start_pos = prompt_length + rel_pos; abs_end_pos = abs_start_pos + len(word_token_ids)
        if abs_start_pos < total_length and abs_end_pos <= total_length:
            try: constraint_tensor = torch.tensor(word_token_ids, dtype=torch.long, device=modified_x.device); modified_x[0, abs_start_pos:abs_end_pos] = constraint_tensor
            except IndexError: print(f"Warning (Step {current_step}): Constraint idx error at {rel_pos}")
            except Exception as e: print(f"Warning (Step {current_step}): Constraint apply error at {rel_pos}: {e}")
    return modified_x


# --- Core Generation Logic with Live Visualization ---

@spaces.GPU
@torch.no_grad()
def generate_dream_response(
    history: List[Dict[str, str]], # MODIFIED: Expect List[Dict]
    gen_length: int,
    steps: int,
    constraints_text: str,
    temperature: float,
    top_p: Optional[float],
    top_k: Optional[int],
    alg: str,
    alg_temp: Optional[float],
    visualization_delay: float
): # Removed -> type hint for cleaner yield handling
    """ Generates text step-by-step and yields visualization states live. """

    if not history or history[-1]["role"] != "user": # Check last message is from user
        yield history, [("No user message found to respond to.", "red")]
        return

    # --- 1. Preparation ---
    # History is already formatted for the template
    parsed_constraints = parse_constraints(constraints_text)

    try:
        # apply_chat_template expects List[Dict[str, str]]
        inputs = tokenizer.apply_chat_template(
            history, # Use history directly
            return_tensors="pt",
            return_dict=True,
            add_generation_prompt=True # Crucial: Adds the "<|im_start|>assistant\n" prompt
        )
        input_ids = inputs.input_ids.to(device)
        prompt_attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else torch.ones_like(input_ids)
        prompt_length = input_ids.shape[1] # Length *after* adding the generation prompt
    except Exception as e:
        print(f"Error applying chat template: {e}")
        # Yield current history and error message for visualization
        yield history, [("Error preparing input.", "red")]
        return

    eps = 1e-3
    top_p_val = top_p if top_p is not None and 0.0 < top_p < 1.0 else None
    top_k_val = top_k if top_k is not None and top_k > 0 else None
    alg_temp_val = alg_temp if alg in ['maskgit_plus', 'topk_margin', 'entropy'] and alg_temp is not None and alg_temp > 0 else None

    # --- 2. Initialize Generation State ---
    total_length = prompt_length + gen_length
    initial_generation_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
    # input_ids already includes the assistant prompt, so just append masks
    x = torch.cat((input_ids, initial_generation_part), dim=1)

    # --- Prepare Attention Mask for SDPA ---
    generation_attention_mask = torch.ones((1, gen_length), dtype=torch.long, device=device)
    # prompt_attention_mask corresponds to input_ids (which includes assistant prompt)
    full_attention_mask_long = torch.cat((prompt_attention_mask, generation_attention_mask), dim=1)

    attention_mask_for_model = full_attention_mask_long.to(model.dtype)
    large_neg_val = torch.finfo(model.dtype).min
    attention_mask_for_model = (1.0 - attention_mask_for_model) * large_neg_val
    attention_mask_for_model = attention_mask_for_model.unsqueeze(1).unsqueeze(2) # [B, 1, 1, N]

    # --- Timesteps ---
    timesteps = torch.linspace(1, eps, steps + 1, device=device)

    # Apply initial constraints (relative to start of generation = prompt_length)
    x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=-1)

    # --- 3. Visualization & History Setup ---
    previous_tokens_vis = None
    # MODIFIED: Append placeholder assistant message to the history state *before* looping
    history.append({"role": "assistant", "content": ""})

    # --- 4. Initial Yield (Masked State) ---
    initial_generated_tokens = x[0, prompt_length:].cpu()
    vis_data_initial = []
    for tok_id in initial_generated_tokens.tolist():
        display_token = MASK_TOKEN; color = "#444444"
        vis_data_initial.append((display_token, color))

    previous_tokens_vis = initial_generated_tokens
    # Yield the history (which now includes the empty assistant message) and initial vis
    yield history, vis_data_initial
    time.sleep(visualization_delay)

    # --- 5. Step-by-Step Diffusion Loop ---
    try:
        start_time = time.time()
        for i in range(steps):
            mask_index = (x == MASK_ID)
            if not mask_index.any(): break # Stop early

            outputs = model(input_ids=x, attention_mask=attention_mask_for_model, return_dict=True)
            logits = outputs.logits
            logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1) # Align logits

            mask_logits = logits[mask_index]
            if mask_logits.numel() == 0: break # Stop early

            t = timesteps[i]; s = timesteps[i + 1]
            x_new_masked_part = torch.full_like(x[mask_index], MASK_ID, device=device, dtype=torch.long)

            # [Keep sampling/remasking logic ('origin' and confidence-based) exactly the same]
            if alg == 'origin':
                p_transfer = (1.0 - s / t) if i < steps - 1 else 1.0
                num_masked = mask_logits.shape[0]
                transfer_indices_relative = torch.rand(num_masked, device=device) < p_transfer
                logits_to_sample = mask_logits[transfer_indices_relative]
                if logits_to_sample.numel() > 0: _, sampled_tokens = sample_tokens(logits_to_sample, temperature=temperature, top_p=top_p_val, top_k=top_k_val); x_new_masked_part[transfer_indices_relative] = sampled_tokens
            else:
                use_margin=(alg == 'topk_margin'); use_entropy=(alg == 'entropy')
                confidence, x0_candidates = sample_tokens(mask_logits, temperature=temperature, top_p=top_p_val, top_k=top_k_val, margin_confidence=use_margin, neg_entropy=use_entropy)
                num_mask_token = mask_logits.shape[0]
                target_num_revealed_float = num_mask_token * (1.0 - s / t)
                number_transfer_tokens = int(target_num_revealed_float) if i < steps - 1 else num_mask_token
                if number_transfer_tokens > 0:
                    num_samples = min(number_transfer_tokens, num_mask_token)
                    if num_samples > 0:
                        transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)
                        if alg_temp_val is None or alg_temp_val <= 0: # Top-k confidence
                            sort_metric = confidence if alg != 'entropy' else -confidence
                            k_topk = min(num_samples, sort_metric.numel())
                            if k_topk > 0: _, transfer_indices_relative = torch.topk(sort_metric, k=k_topk)
                        else: # Sample based on confidence temperature
                            if confidence.numel() > 0:
                                conf_probs = confidence / alg_temp_val; conf_probs = torch.nan_to_num(conf_probs, nan=0.0, posinf=1e9, neginf=-1e9); conf_probs = torch.clamp(conf_probs - conf_probs.max(), min=-30); conf_probs = F.softmax(conf_probs, dim=-1); conf_probs = torch.clamp(conf_probs, min=0.0); conf_probs = torch.nan_to_num(conf_probs, nan=0.0)
                                prob_sum = conf_probs.sum(); target_sum_tensor = torch.tensor(1.0, device=device, dtype=prob_sum.dtype)
                                if not torch.isclose(prob_sum, target_sum_tensor, atol=1e-4) and prob_sum > 0: safe_prob_sum = torch.max(prob_sum, torch.tensor(1e-12, device=device, dtype=prob_sum.dtype)); conf_probs = conf_probs / safe_prob_sum
                                final_prob_sum_check = conf_probs.sum()
                                if conf_probs.numel() > 0 and num_samples > 0 and torch.all(conf_probs >= 0) and torch.isclose(final_prob_sum_check, target_sum_tensor, atol=1e-4):
                                    try: transfer_indices_relative = torch.multinomial(conf_probs, num_samples=num_samples, replacement=False)
                                    except RuntimeError as e: print(f"Warning step {i}: Multinomial failed ('{e}'). Fallback."); sort_metric = confidence if alg != 'entropy' else -confidence; k_fallback = min(num_samples, sort_metric.numel()); if k_fallback > 0: _, transfer_indices_relative = torch.topk(sort_metric, k=k_fallback)
                                else: sort_metric = confidence if alg != 'entropy' else -confidence; k_fallback = min(num_samples, sort_metric.numel()); if k_fallback > 0: _, transfer_indices_relative = torch.topk(sort_metric, k=k_fallback)
                        # Apply transfer
                        if transfer_indices_relative.numel() > 0:
                             valid_indices = transfer_indices_relative < x0_candidates.shape[0]; valid_transfer_indices = transfer_indices_relative[valid_indices]
                             if valid_transfer_indices.numel() > 0:
                                  if valid_transfer_indices.max() < x_new_masked_part.shape[0]: x_new_masked_part[valid_transfer_indices] = x0_candidates[valid_transfer_indices].clone()
                                  else: print(f"Warning step {i}: transfer_indices OOB for x_new_masked_part.")

            x[mask_index] = x_new_masked_part # Update state

            # --- Apply Constraints ---
            # Remember prompt_length now includes the assistant prompt turn
            x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=i)

            # --- Yield Visualization ---
            current_generated_tokens = x[0, prompt_length:].cpu()
            vis_data = []
            # [Keep visualization formatting logic the same]
            for j in range(gen_length):
                current_tok_id = current_generated_tokens[j].item()
                previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
                try: decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False); display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
                except Exception: display_token = f"[ID:{current_tok_id}]"
                color = None; token_to_display = display_token
                if current_tok_id == MASK_ID: color = "#444444"
                elif previous_tok_id == MASK_ID: color = "#66CC66"
                else: color = "#6699CC"
                should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or (EOS_ID is not None and current_tok_id == EOS_ID)
                if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None
                if token_to_display: vis_data.append((token_to_display, color))

            previous_tokens_vis = current_generated_tokens

            # MODIFIED: Update the *content* of the last history item
            intermediate_response_tokens = x[0, prompt_length:]
            intermediate_response_text = tokenizer.decode(intermediate_response_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True).strip()
            history[-1]["content"] = intermediate_response_text # Update last dict entry

            # Yield the updated history list and current vis data
            yield history, vis_data
            time.sleep(visualization_delay)

        end_time = time.time()
        print(f"Dream generation finished in {end_time - start_time:.2f} seconds.")

        # --- 6. Final Processing & Yield ---
        final_sequence = x[0]
        response_tokens = final_sequence[prompt_length:]
        final_response_text = tokenizer.decode(response_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True).strip()
        # Update the final content in the history object
        history[-1]["content"] = final_response_text

        final_generated_tokens = x[0, prompt_length:].cpu()
        vis_data_final = []
        # [Keep final visualization formatting logic the same]
        for j in range(gen_length):
            current_tok_id = final_generated_tokens[j].item()
            previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
            try: decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False); display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
            except Exception: display_token = f"[ID:{current_tok_id}]"
            color = None; token_to_display = display_token
            if current_tok_id == MASK_ID: color = "#444444"
            elif previous_tok_id == MASK_ID: color = "#66CC66"
            else: color = "#6699CC"
            should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or (EOS_ID is not None and current_tok_id == EOS_ID)
            if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None
            if token_to_display: vis_data_final.append((token_to_display, color))

        # Yield final history and visualization
        yield history, vis_data_final
        print("Visualization streaming complete.")

    except Exception as e:
        print(f"Error during generation or processing: {e}")
        import traceback
        traceback.print_exc()
        # Set error message in the last history item? Or yield separate error?
        # Let's just yield the current history and error vis
        history[-1]["content"] = f"Error: {e}" # Put error in assistant message
        yield history, [("Error during generation.", "red")]
        return


# --- Gradio UI ---
css = '''
.category-legend{display:none}
button{min-height: 60px}
'''
def create_chatbot_demo():
    with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
        gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
        gr.Markdown(
            "[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] "
            "[[Blog](https://hkunlp.github.io/blog/2025/dream/)]"
        )

        # STATE: No explicit state needed if chatbot manages it via input/output

        with gr.Row():
            with gr.Column(scale=3):
                # MODIFIED: Use type="messages"
                chatbot_ui = gr.Chatbot(
                    label="Conversation",
                    type="messages", # Use dictionary format
                    height=500,
                    show_copy_button=True,
                    bubble_full_width=False,
                )
                with gr.Group():
                    with gr.Row():
                        user_input = gr.Textbox(
                            label="Your Message", placeholder="Type your message here...",
                            scale=7, autofocus=True, show_label=False, container=False
                        )
                        send_btn = gr.Button("Send", scale=1, variant="primary")
                constraints_input = gr.Textbox(
                    label="Word Constraints (Optional)",
                    info="Format: 'pos:word, pos:word,...'. Example: '0:Once, 5:upon, 10:time'",
                    placeholder="0:Hello, 10:world", value=""
                )
            with gr.Column(scale=2):
                output_vis = gr.HighlightedText(
                    label="Denoising Process Visualization",
                    combine_adjacent=True, show_legend=False, interactive=False
                )
                # REMOVED: Separate response text display

        with gr.Accordion("Generation Settings", open=False):
             # [Settings sliders remain the same]
             with gr.Row():
                gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens")
                steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps")
             with gr.Row():
                temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.05, label="Temperature (0 = greedy)")
                alg_temp = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Remasking Temp (Confidence Algs)")
             with gr.Row():
                top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-P (0 disables)")
                top_k = gr.Slider(minimum=0, maximum=200, value=0, step=5, label="Top-K (0 disables)")
             with gr.Row():
                 remasking_strategy = gr.Radio(choices=['origin', 'maskgit_plus', 'topk_margin', 'entropy'], value='entropy', label="Remasking Strategy (Algorithm)")
             with gr.Row():
                visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.03, step=0.01, label="Visualization Delay (seconds)")

        clear_btn = gr.Button("Clear Conversation")

        # --- Event Handlers ---

        # MODIFIED: add_user_message uses dictionary format
        def add_user_message(message: str, history: List[Dict[str, str]]):
            """Adds user message in dictionary format, clears input."""
            if not message.strip():
                gr.Warning("Please enter a message.")
                return history, "" # Return unchanged history, don't clear input here
            # Append user message as a dictionary
            history.append({"role": "user", "content": message})
            # Return updated history, clear input box
            return history, ""

        def clear_all():
            """Clears chatbot, visualization, and input."""
            return [], [], "" # Chatbot, Vis, Input

        # --- Connect UI elements ---

        # Define the inputs for the generation function
        # MODIFIED: Input is chatbot_ui (provides List[Dict])
        generation_inputs = [
            chatbot_ui, # Get history directly from chatbot component
            gen_length, steps, constraints_input,
            temperature, top_p, top_k, remasking_strategy, alg_temp,
            visualization_delay
        ]
        # Define the outputs for the generation function
        # MODIFIED: Output history (List[Dict]) to chatbot_ui, vis_data to output_vis
        generation_outputs = [chatbot_ui, output_vis]

        # Handle Textbox Submission (Enter key)
        submit_listener = user_input.submit(
            fn=add_user_message, # Use modified function
            inputs=[user_input, chatbot_ui], # Pass chatbot state
            outputs=[chatbot_ui, user_input], # Update chatbot state, clear input
            queue=False # User message add should be quick
        ).then(
            fn=generate_dream_response,
            inputs=generation_inputs,
            outputs=generation_outputs, # Stream history to chatbot, vis to output_vis
            show_progress="hidden"
        )

        # Handle Send Button Click
        click_listener = send_btn.click(
            fn=add_user_message, # Use modified function
            inputs=[user_input, chatbot_ui], # Pass chatbot state
            outputs=[chatbot_ui, user_input], # Update chatbot state, clear input
            queue=False # User message add should be quick
        ).then(
            fn=generate_dream_response,
            inputs=generation_inputs,
            outputs=generation_outputs, # Stream history to chatbot, vis to output_vis
            show_progress="hidden"
        )

        # Clear Button Action
        clear_btn.click(
            clear_all, # Use modified clear function
            inputs=[],
            outputs=[chatbot_ui, output_vis, user_input], # Clear chatbot, vis, input
            queue=False
        )

    return demo

# --- Launch ---
if __name__ == "__main__":
    demo = create_chatbot_demo()
    demo.queue().launch(debug=True, share=False)