Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,534 Bytes
ce90309 47fc4a0 ce90309 47fc4a0 f4ff30a 168a7c1 825e87d 47fc4a0 f4ff30a 4474e7a fb0307e 4474e7a 3d09f97 4474e7a 3d09f97 4474e7a 3d09f97 fb0307e 4474e7a 3d09f97 4474e7a 3d09f97 fb0307e 3d09f97 4474e7a 3d09f97 4474e7a 3d09f97 badae07 4474e7a 3d09f97 f4ff30a 168a7c1 f4ff30a 168a7c1 f4ff30a 825e87d fb0307e 4474e7a fb0307e f4ff30a 825e87d fb0307e f4ff30a 4474e7a fb0307e 4474e7a fb0307e f4ff30a 47fc4a0 fb0307e 47fc4a0 2491cbe fb0307e 825e87d 47fc4a0 2491cbe badae07 3d09f97 fb0307e f4ff30a 47fc4a0 3d09f97 47fc4a0 4474e7a fb0307e 4474e7a fb0307e 4474e7a 3d09f97 4474e7a 3d09f97 4474e7a f4ff30a fb0307e f4ff30a 3d09f97 f4ff30a 3d09f97 badae07 825e87d 3d09f97 f4ff30a 3d09f97 badae07 f4ff30a 825e87d 3d09f97 f4ff30a 3d09f97 f4ff30a 3d09f97 825e87d badae07 3d09f97 f4ff30a 3d09f97 f4ff30a badae07 2491cbe 4474e7a 2491cbe f4ff30a 4474e7a 3d09f97 4474e7a 3d09f97 1321d2f 3d09f97 1321d2f 3d09f97 1321d2f badae07 3d09f97 2491cbe 3d09f97 4474e7a 3d09f97 badae07 4474e7a 3d09f97 badae07 3d09f97 4474e7a 3d09f97 4474e7a 3d09f97 4474e7a badae07 3d09f97 4474e7a 3d09f97 4474e7a 1321d2f 3d09f97 4474e7a fb0307e 4474e7a 3d09f97 4474e7a badae07 4474e7a 3d09f97 4474e7a 1321d2f 2491cbe 3d09f97 2491cbe badae07 fb0307e 3d09f97 badae07 3d09f97 d07e660 fb0307e 3d09f97 fb0307e badae07 3d09f97 fb0307e 3d09f97 4474e7a 3d09f97 4474e7a 1321d2f 4474e7a 3d09f97 4474e7a badae07 3d09f97 1321d2f fb0307e 1321d2f 2491cbe badae07 3d09f97 4474e7a 3d09f97 4474e7a 825e87d f4ff30a 9b91020 4474e7a 825e87d 3d09f97 ce90309 4474e7a 3d09f97 f4ff30a 3d09f97 4474e7a 47fc4a0 4474e7a 1321d2f 4474e7a 3d09f97 4474e7a f4ff30a 2491cbe 47fc4a0 f4ff30a 47fc4a0 168a7c1 ce90309 168a7c1 fb0307e 168a7c1 47fc4a0 3d09f97 47fc4a0 3d09f97 825e87d 3d09f97 825e87d f4ff30a 4474e7a f4ff30a ce90309 47fc4a0 fb0307e 47fc4a0 f4ff30a 47fc4a0 f4ff30a fb0307e 47fc4a0 3d09f97 47fc4a0 3d09f97 47fc4a0 ce90309 fb0307e badae07 3c422aa badae07 2491cbe 47fc4a0 ce90309 47fc4a0 3d09f97 2491cbe 3d09f97 f4ff30a 3d09f97 fb0307e 3d09f97 2491cbe f4ff30a 3d09f97 5807c79 3d09f97 5807c79 3d09f97 2491cbe 3d09f97 5807c79 3d09f97 5807c79 3d09f97 3c422aa 5807c79 3d09f97 5807c79 3d09f97 5807c79 3c422aa 3d09f97 3c422aa 5807c79 3d09f97 47fc4a0 3d09f97 47fc4a0 3d09f97 825e87d 47fc4a0 f4ff30a 47fc4a0 ce90309 fb0307e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
# dream_app.py
import torch
import numpy as np
import gradio as gr
import spaces # Ensure spaces is installed if needed for GPU decorator
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, AutoConfig
import time
import re
from typing import List, Dict, Tuple, Optional
import torch.distributions as dists # Added import
# --- START: Copied Helper functions from generation_utils.py ---
# [Keep the copied functions: top_p_logits, top_k_logits, sample_tokens]
def top_p_logits(logits, top_p=None):
if top_p is None or top_p >= 1.0: return logits
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone(); sorted_indices_to_remove[..., 0] = 0
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device).scatter_(-1, sorted_indices, sorted_indices_to_remove)
return logits.masked_fill(mask, torch.finfo(logits.dtype).min)
def top_k_logits(logits, top_k=None):
if top_k is None or top_k <= 0: return logits
top_k = min(top_k, logits.size(-1))
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
return logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
if temperature > 0: safe_temp = max(temperature, 1e-6); logits = logits / safe_temp
if top_p is not None and 0.0 < top_p < 1.0: logits = top_p_logits(logits, top_p)
if top_k is not None and top_k > 0: logits = top_k_logits(logits, top_k)
is_all_neg_inf = torch.all(logits == torch.finfo(logits.dtype).min, dim=-1, keepdim=True)
if torch.any(is_all_neg_inf): uniform_logits = torch.zeros_like(logits); logits = torch.where(is_all_neg_inf, uniform_logits, logits)
probs = torch.softmax(logits, dim=-1)
probs = torch.clamp(probs, min=0.0); probs = probs / probs.sum(dim=-1, keepdim=True); probs = torch.nan_to_num(probs, nan=0.0)
if temperature > 0:
try: x0 = dists.Categorical(probs=probs).sample(); confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
except Exception as e: print(f"Warning: Sampling failed: {e}. Argmax fallback."); confidence, x0 = probs.max(dim=-1)
else: confidence, x0 = probs.max(dim=-1)
if margin_confidence: sorted_probs, _ = torch.sort(probs, dim=-1, descending=True); top1_probs = sorted_probs[..., 0]; top2_probs = sorted_probs[..., 1] if sorted_probs.shape[-1] > 1 else top1_probs; confidence = top1_probs - top2_probs
if neg_entropy: epsilon = 1e-10; log_probs = torch.log(probs + epsilon); confidence = torch.sum(probs * log_probs, dim=-1)
confidence = torch.nan_to_num(confidence, nan=0.0)
return confidence, x0
# --- END: Copied Helper functions ---
# [Keep model loading, constants as before]
# Load model configuration to get special token IDs
config = AutoConfig.from_pretrained("Dream-org/Dream-v0-Instruct-7B", trust_remote_code=True)
model_path = "Dream-org/Dream-v0-Instruct-7B"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
print("Loading model...")
model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32,
trust_remote_code=True,
attn_implementation="sdpa"
)
model = model.to(device).eval()
print("Model loaded.")
MASK_TOKEN = tokenizer.mask_token
MASK_ID = tokenizer.mask_token_id
PAD_ID = tokenizer.pad_token_id
EOS_ID = tokenizer.eos_token_id
if MASK_ID is None: raise ValueError("Cannot determine MASK_ID.")
SPECIAL_TOKEN_IDS = {PAD_ID, EOS_ID, MASK_ID}
try:
IM_START_ID = tokenizer.convert_tokens_to_ids("<|im_start|>")
IM_END_ID = tokenizer.convert_tokens_to_ids("<|im_end|>")
SPECIAL_TOKEN_IDS.add(IM_START_ID)
SPECIAL_TOKEN_IDS.add(IM_END_ID)
except KeyError: IM_START_ID, IM_END_ID = None, None
# --- Helper Functions ---
def parse_constraints(constraints_text: str) -> Dict[int, List[int]]:
constraints = {}
if not constraints_text: return constraints
parts = constraints_text.split(',')
for part in parts:
part = part.strip()
if ':' not in part: continue
pos_str, word = part.split(':', 1)
try:
pos = int(pos_str.strip())
word = word.strip()
token_ids = []
if word: text_to_encode = (" " + word) if (pos > 0 and not word.startswith(" ")) else word; token_ids = tokenizer.encode(text_to_encode, add_special_tokens=False)
if token_ids and pos >= 0: constraints[pos] = token_ids
elif not token_ids and word: print(f"Warning: Could not tokenize constraint word '{word}'")
except ValueError: print(f"Warning: Invalid position '{pos_str}' in constraint part '{part}'")
except Exception as e: print(f"Warning: Error processing constraint '{part}': {e}")
return constraints
# Removed format_chat_history as history will be in the correct format
def apply_constraints_to_state(
x: torch.Tensor, prompt_length: int, total_length: int,
parsed_constraints: Dict[int, List[int]], current_step: Optional[int] = None
) -> torch.Tensor:
modified_x = x.clone()
for rel_pos, word_token_ids in parsed_constraints.items():
abs_start_pos = prompt_length + rel_pos; abs_end_pos = abs_start_pos + len(word_token_ids)
if abs_start_pos < total_length and abs_end_pos <= total_length:
try: constraint_tensor = torch.tensor(word_token_ids, dtype=torch.long, device=modified_x.device); modified_x[0, abs_start_pos:abs_end_pos] = constraint_tensor
except IndexError: print(f"Warning (Step {current_step}): Constraint idx error at {rel_pos}")
except Exception as e: print(f"Warning (Step {current_step}): Constraint apply error at {rel_pos}: {e}")
return modified_x
# --- Core Generation Logic with Live Visualization ---
@spaces.GPU
@torch.no_grad()
def generate_dream_response(
history: List[Dict[str, str]], # MODIFIED: Expect List[Dict]
gen_length: int,
steps: int,
constraints_text: str,
temperature: float,
top_p: Optional[float],
top_k: Optional[int],
alg: str,
alg_temp: Optional[float],
visualization_delay: float
): # Removed -> type hint for cleaner yield handling
""" Generates text step-by-step and yields visualization states live. """
if not history or history[-1]["role"] != "user": # Check last message is from user
yield history, [("No user message found to respond to.", "red")]
return
# --- 1. Preparation ---
# History is already formatted for the template
parsed_constraints = parse_constraints(constraints_text)
try:
# apply_chat_template expects List[Dict[str, str]]
inputs = tokenizer.apply_chat_template(
history, # Use history directly
return_tensors="pt",
return_dict=True,
add_generation_prompt=True # Crucial: Adds the "<|im_start|>assistant\n" prompt
)
input_ids = inputs.input_ids.to(device)
prompt_attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else torch.ones_like(input_ids)
prompt_length = input_ids.shape[1] # Length *after* adding the generation prompt
except Exception as e:
print(f"Error applying chat template: {e}")
# Yield current history and error message for visualization
yield history, [("Error preparing input.", "red")]
return
eps = 1e-3
top_p_val = top_p if top_p is not None and 0.0 < top_p < 1.0 else None
top_k_val = top_k if top_k is not None and top_k > 0 else None
alg_temp_val = alg_temp if alg in ['maskgit_plus', 'topk_margin', 'entropy'] and alg_temp is not None and alg_temp > 0 else None
# --- 2. Initialize Generation State ---
total_length = prompt_length + gen_length
initial_generation_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
# input_ids already includes the assistant prompt, so just append masks
x = torch.cat((input_ids, initial_generation_part), dim=1)
# --- Prepare Attention Mask for SDPA ---
generation_attention_mask = torch.ones((1, gen_length), dtype=torch.long, device=device)
# prompt_attention_mask corresponds to input_ids (which includes assistant prompt)
full_attention_mask_long = torch.cat((prompt_attention_mask, generation_attention_mask), dim=1)
attention_mask_for_model = full_attention_mask_long.to(model.dtype)
large_neg_val = torch.finfo(model.dtype).min
attention_mask_for_model = (1.0 - attention_mask_for_model) * large_neg_val
attention_mask_for_model = attention_mask_for_model.unsqueeze(1).unsqueeze(2) # [B, 1, 1, N]
# --- Timesteps ---
timesteps = torch.linspace(1, eps, steps + 1, device=device)
# Apply initial constraints (relative to start of generation = prompt_length)
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=-1)
# --- 3. Visualization & History Setup ---
previous_tokens_vis = None
# MODIFIED: Append placeholder assistant message to the history state *before* looping
history.append({"role": "assistant", "content": ""})
# --- 4. Initial Yield (Masked State) ---
initial_generated_tokens = x[0, prompt_length:].cpu()
vis_data_initial = []
for tok_id in initial_generated_tokens.tolist():
display_token = MASK_TOKEN; color = "#444444"
vis_data_initial.append((display_token, color))
previous_tokens_vis = initial_generated_tokens
# Yield the history (which now includes the empty assistant message) and initial vis
yield history, vis_data_initial
time.sleep(visualization_delay)
# --- 5. Step-by-Step Diffusion Loop ---
try:
start_time = time.time()
for i in range(steps):
mask_index = (x == MASK_ID)
if not mask_index.any(): break # Stop early
outputs = model(input_ids=x, attention_mask=attention_mask_for_model, return_dict=True)
logits = outputs.logits
logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1) # Align logits
mask_logits = logits[mask_index]
if mask_logits.numel() == 0: break # Stop early
t = timesteps[i]; s = timesteps[i + 1]
x_new_masked_part = torch.full_like(x[mask_index], MASK_ID, device=device, dtype=torch.long)
# [Keep sampling/remasking logic ('origin' and confidence-based) exactly the same]
if alg == 'origin':
p_transfer = (1.0 - s / t) if i < steps - 1 else 1.0
num_masked = mask_logits.shape[0]
transfer_indices_relative = torch.rand(num_masked, device=device) < p_transfer
logits_to_sample = mask_logits[transfer_indices_relative]
if logits_to_sample.numel() > 0: _, sampled_tokens = sample_tokens(logits_to_sample, temperature=temperature, top_p=top_p_val, top_k=top_k_val); x_new_masked_part[transfer_indices_relative] = sampled_tokens
else:
use_margin=(alg == 'topk_margin'); use_entropy=(alg == 'entropy')
confidence, x0_candidates = sample_tokens(mask_logits, temperature=temperature, top_p=top_p_val, top_k=top_k_val, margin_confidence=use_margin, neg_entropy=use_entropy)
num_mask_token = mask_logits.shape[0]
target_num_revealed_float = num_mask_token * (1.0 - s / t)
number_transfer_tokens = int(target_num_revealed_float) if i < steps - 1 else num_mask_token
if number_transfer_tokens > 0:
num_samples = min(number_transfer_tokens, num_mask_token)
if num_samples > 0:
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)
if alg_temp_val is None or alg_temp_val <= 0: # Top-k confidence
sort_metric = confidence if alg != 'entropy' else -confidence
k_topk = min(num_samples, sort_metric.numel())
if k_topk > 0: _, transfer_indices_relative = torch.topk(sort_metric, k=k_topk)
else: # Sample based on confidence temperature
if confidence.numel() > 0:
conf_probs = confidence / alg_temp_val; conf_probs = torch.nan_to_num(conf_probs, nan=0.0, posinf=1e9, neginf=-1e9); conf_probs = torch.clamp(conf_probs - conf_probs.max(), min=-30); conf_probs = F.softmax(conf_probs, dim=-1); conf_probs = torch.clamp(conf_probs, min=0.0); conf_probs = torch.nan_to_num(conf_probs, nan=0.0)
prob_sum = conf_probs.sum(); target_sum_tensor = torch.tensor(1.0, device=device, dtype=prob_sum.dtype)
if not torch.isclose(prob_sum, target_sum_tensor, atol=1e-4) and prob_sum > 0: safe_prob_sum = torch.max(prob_sum, torch.tensor(1e-12, device=device, dtype=prob_sum.dtype)); conf_probs = conf_probs / safe_prob_sum
final_prob_sum_check = conf_probs.sum()
if conf_probs.numel() > 0 and num_samples > 0 and torch.all(conf_probs >= 0) and torch.isclose(final_prob_sum_check, target_sum_tensor, atol=1e-4):
try: transfer_indices_relative = torch.multinomial(conf_probs, num_samples=num_samples, replacement=False)
except RuntimeError as e: print(f"Warning step {i}: Multinomial failed ('{e}'). Fallback."); sort_metric = confidence if alg != 'entropy' else -confidence; k_fallback = min(num_samples, sort_metric.numel()); if k_fallback > 0: _, transfer_indices_relative = torch.topk(sort_metric, k=k_fallback)
else: sort_metric = confidence if alg != 'entropy' else -confidence; k_fallback = min(num_samples, sort_metric.numel()); if k_fallback > 0: _, transfer_indices_relative = torch.topk(sort_metric, k=k_fallback)
# Apply transfer
if transfer_indices_relative.numel() > 0:
valid_indices = transfer_indices_relative < x0_candidates.shape[0]; valid_transfer_indices = transfer_indices_relative[valid_indices]
if valid_transfer_indices.numel() > 0:
if valid_transfer_indices.max() < x_new_masked_part.shape[0]: x_new_masked_part[valid_transfer_indices] = x0_candidates[valid_transfer_indices].clone()
else: print(f"Warning step {i}: transfer_indices OOB for x_new_masked_part.")
x[mask_index] = x_new_masked_part # Update state
# --- Apply Constraints ---
# Remember prompt_length now includes the assistant prompt turn
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=i)
# --- Yield Visualization ---
current_generated_tokens = x[0, prompt_length:].cpu()
vis_data = []
# [Keep visualization formatting logic the same]
for j in range(gen_length):
current_tok_id = current_generated_tokens[j].item()
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
try: decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False); display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
except Exception: display_token = f"[ID:{current_tok_id}]"
color = None; token_to_display = display_token
if current_tok_id == MASK_ID: color = "#444444"
elif previous_tok_id == MASK_ID: color = "#66CC66"
else: color = "#6699CC"
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or (EOS_ID is not None and current_tok_id == EOS_ID)
if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None
if token_to_display: vis_data.append((token_to_display, color))
previous_tokens_vis = current_generated_tokens
# MODIFIED: Update the *content* of the last history item
intermediate_response_tokens = x[0, prompt_length:]
intermediate_response_text = tokenizer.decode(intermediate_response_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True).strip()
history[-1]["content"] = intermediate_response_text # Update last dict entry
# Yield the updated history list and current vis data
yield history, vis_data
time.sleep(visualization_delay)
end_time = time.time()
print(f"Dream generation finished in {end_time - start_time:.2f} seconds.")
# --- 6. Final Processing & Yield ---
final_sequence = x[0]
response_tokens = final_sequence[prompt_length:]
final_response_text = tokenizer.decode(response_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True).strip()
# Update the final content in the history object
history[-1]["content"] = final_response_text
final_generated_tokens = x[0, prompt_length:].cpu()
vis_data_final = []
# [Keep final visualization formatting logic the same]
for j in range(gen_length):
current_tok_id = final_generated_tokens[j].item()
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
try: decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False); display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
except Exception: display_token = f"[ID:{current_tok_id}]"
color = None; token_to_display = display_token
if current_tok_id == MASK_ID: color = "#444444"
elif previous_tok_id == MASK_ID: color = "#66CC66"
else: color = "#6699CC"
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or (EOS_ID is not None and current_tok_id == EOS_ID)
if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None
if token_to_display: vis_data_final.append((token_to_display, color))
# Yield final history and visualization
yield history, vis_data_final
print("Visualization streaming complete.")
except Exception as e:
print(f"Error during generation or processing: {e}")
import traceback
traceback.print_exc()
# Set error message in the last history item? Or yield separate error?
# Let's just yield the current history and error vis
history[-1]["content"] = f"Error: {e}" # Put error in assistant message
yield history, [("Error during generation.", "red")]
return
# --- Gradio UI ---
css = '''
.category-legend{display:none}
button{min-height: 60px}
'''
def create_chatbot_demo():
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
gr.Markdown(
"[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] "
"[[Blog](https://hkunlp.github.io/blog/2025/dream/)]"
)
# STATE: No explicit state needed if chatbot manages it via input/output
with gr.Row():
with gr.Column(scale=3):
# MODIFIED: Use type="messages"
chatbot_ui = gr.Chatbot(
label="Conversation",
type="messages", # Use dictionary format
height=500,
show_copy_button=True,
bubble_full_width=False,
)
with gr.Group():
with gr.Row():
user_input = gr.Textbox(
label="Your Message", placeholder="Type your message here...",
scale=7, autofocus=True, show_label=False, container=False
)
send_btn = gr.Button("Send", scale=1, variant="primary")
constraints_input = gr.Textbox(
label="Word Constraints (Optional)",
info="Format: 'pos:word, pos:word,...'. Example: '0:Once, 5:upon, 10:time'",
placeholder="0:Hello, 10:world", value=""
)
with gr.Column(scale=2):
output_vis = gr.HighlightedText(
label="Denoising Process Visualization",
combine_adjacent=True, show_legend=False, interactive=False
)
# REMOVED: Separate response text display
with gr.Accordion("Generation Settings", open=False):
# [Settings sliders remain the same]
with gr.Row():
gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens")
steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps")
with gr.Row():
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.05, label="Temperature (0 = greedy)")
alg_temp = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Remasking Temp (Confidence Algs)")
with gr.Row():
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-P (0 disables)")
top_k = gr.Slider(minimum=0, maximum=200, value=0, step=5, label="Top-K (0 disables)")
with gr.Row():
remasking_strategy = gr.Radio(choices=['origin', 'maskgit_plus', 'topk_margin', 'entropy'], value='entropy', label="Remasking Strategy (Algorithm)")
with gr.Row():
visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.03, step=0.01, label="Visualization Delay (seconds)")
clear_btn = gr.Button("Clear Conversation")
# --- Event Handlers ---
# MODIFIED: add_user_message uses dictionary format
def add_user_message(message: str, history: List[Dict[str, str]]):
"""Adds user message in dictionary format, clears input."""
if not message.strip():
gr.Warning("Please enter a message.")
return history, "" # Return unchanged history, don't clear input here
# Append user message as a dictionary
history.append({"role": "user", "content": message})
# Return updated history, clear input box
return history, ""
def clear_all():
"""Clears chatbot, visualization, and input."""
return [], [], "" # Chatbot, Vis, Input
# --- Connect UI elements ---
# Define the inputs for the generation function
# MODIFIED: Input is chatbot_ui (provides List[Dict])
generation_inputs = [
chatbot_ui, # Get history directly from chatbot component
gen_length, steps, constraints_input,
temperature, top_p, top_k, remasking_strategy, alg_temp,
visualization_delay
]
# Define the outputs for the generation function
# MODIFIED: Output history (List[Dict]) to chatbot_ui, vis_data to output_vis
generation_outputs = [chatbot_ui, output_vis]
# Handle Textbox Submission (Enter key)
submit_listener = user_input.submit(
fn=add_user_message, # Use modified function
inputs=[user_input, chatbot_ui], # Pass chatbot state
outputs=[chatbot_ui, user_input], # Update chatbot state, clear input
queue=False # User message add should be quick
).then(
fn=generate_dream_response,
inputs=generation_inputs,
outputs=generation_outputs, # Stream history to chatbot, vis to output_vis
show_progress="hidden"
)
# Handle Send Button Click
click_listener = send_btn.click(
fn=add_user_message, # Use modified function
inputs=[user_input, chatbot_ui], # Pass chatbot state
outputs=[chatbot_ui, user_input], # Update chatbot state, clear input
queue=False # User message add should be quick
).then(
fn=generate_dream_response,
inputs=generation_inputs,
outputs=generation_outputs, # Stream history to chatbot, vis to output_vis
show_progress="hidden"
)
# Clear Button Action
clear_btn.click(
clear_all, # Use modified clear function
inputs=[],
outputs=[chatbot_ui, output_vis, user_input], # Clear chatbot, vis, input
queue=False
)
return demo
# --- Launch ---
if __name__ == "__main__":
demo = create_chatbot_demo()
demo.queue().launch(debug=True, share=False) |