File size: 9,124 Bytes
f1090ff
4f7293e
f1090ff
 
4f7293e
f1090ff
 
 
1eca925
f1090ff
 
 
 
 
 
 
4f7293e
 
f1090ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
966ceba
f1090ff
 
4f7293e
 
f1090ff
 
4f7293e
f1090ff
4f7293e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1090ff
 
 
 
4f7293e
f1090ff
4f7293e
f1090ff
4f7293e
 
f1090ff
4f7293e
f1090ff
 
 
 
4f7293e
 
 
 
f1090ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f7293e
 
 
 
 
 
 
 
 
 
 
1eca925
 
4f7293e
1d8231b
4f7293e
1d8231b
4f7293e
 
1d8231b
 
 
4f7293e
 
 
 
1eca925
 
4f7293e
 
 
 
 
 
 
1d8231b
4f7293e
 
 
1eca925
4f7293e
 
 
 
 
 
 
 
1eca925
f1090ff
 
 
 
 
 
 
 
 
4f7293e
 
 
 
 
 
 
 
 
f1090ff
4f7293e
 
f1090ff
4f7293e
 
 
 
 
 
 
f1090ff
 
4f7293e
 
 
 
 
 
 
 
 
f1090ff
 
 
 
 
1d8231b
4f7293e
1d8231b
4f7293e
 
 
 
 
f1090ff
 
 
 
 
 
4f7293e
f1090ff
 
 
 
 
 
4f7293e
 
 
 
 
f1090ff
 
 
4f7293e
 
 
f1090ff
4f7293e
f1090ff
 
 
4f7293e
f1090ff
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import gradio as gr
import pdfplumber, docx, sqlite3, os, random
from datetime import datetime
import pandas as pd
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from duckduckgo_search import DDGS
from fpdf import FPDF

# -----------------------------
# CONFIG
# -----------------------------
DB_NAME = "db.sqlite3"
USERNAME = "aixbi"
PASSWORD = "aixbi@123"
MAX_SENTENCES_CHECK = 10
LOGO_PATH = "aixbi.jpg"  # Place your logo here

# -----------------------------
# DB INIT
# -----------------------------
def init_db():
    conn = sqlite3.connect(DB_NAME)
    c = conn.cursor()
    c.execute("""CREATE TABLE IF NOT EXISTS results (
                    id INTEGER PRIMARY KEY AUTOINCREMENT,
                    student_id TEXT,
                    student_name TEXT,
                    ai_score REAL,
                    plagiarism_score REAL,
                    timestamp TEXT
                )""")
    conn.commit()
    conn.close()

init_db()

# -----------------------------
# MODEL LOADING
# -----------------------------
embedder = SentenceTransformer('all-MiniLM-L6-v2')
tokenizer = AutoTokenizer.from_pretrained("SuperAnnotate/ai-detector")
model = AutoModelForSequenceClassification.from_pretrained("SuperAnnotate/ai-detector")

# -----------------------------
# SAFE TEXT EXTRACTION
# -----------------------------
def extract_text(file_obj):
    try:
        name = file_obj.name
        if name.endswith(".pdf"):
            with pdfplumber.open(file_obj.name) as pdf:
                text = " ".join(page.extract_text() or "" for page in pdf.pages)
                return text.strip() if text else None
        elif name.endswith(".docx"):
            doc = docx.Document(file_obj.name)
            text = " ".join([p.text for p in doc.paragraphs])
            return text.strip() if text else None
        elif name.endswith(".txt"):
            text = file_obj.read().decode("utf-8", errors="ignore")
            return text.strip() if text else None
        else:
            return None
    except Exception:
        return None

def detect_ai_text(text):
    inputs = tokenizer(text[:512], return_tensors="pt", truncation=True)
    with torch.no_grad():
        outputs = model(**inputs)
    score = torch.softmax(outputs.logits, dim=1)[0][1].item()
    return score  # probability of AI-generated

def live_plagiarism_check(sentences):
    ddgs = DDGS()
    samples = random.sample(sentences, min(MAX_SENTENCES_CHECK, len(sentences)))
    suspicious_sentences = []
    plagiarism_hits = 0

    for sentence in samples:
        results = list(ddgs.text(sentence, max_results=2))
        if results:
            plagiarism_hits += 1
            suspicious_sentences.append(sentence)

    score = (plagiarism_hits / len(samples)) * 100 if samples else 0
    return score, suspicious_sentences

def save_result(student_id, student_name, ai_score, plagiarism_score):
    conn = sqlite3.connect(DB_NAME)
    c = conn.cursor()
    c.execute("INSERT INTO results (student_id, student_name, ai_score, plagiarism_score, timestamp) VALUES (?,?,?,?,?)",
              (student_id, student_name, ai_score, plagiarism_score, datetime.now().strftime("%Y-%m-%d %H:%M:%S")))
    conn.commit()
    conn.close()

def load_results():
    conn = sqlite3.connect(DB_NAME)
    df = pd.read_sql_query("SELECT * FROM results", conn)
    conn.close()
    return df

# -----------------------------
# PDF REPORT WITH LOGO & COLORS
# -----------------------------
class HighlightPDF(FPDF):
    def add_highlighted_sentence(self, sentence, color):
        self.set_fill_color(*color)
        self.multi_cell(0, 10, sentence, fill=True)
        self.ln(1)

def generate_pdf_report(student_name, student_id, ai_score, plagiarism_score, suspicious_sentences, sample_text, output_path):
    pdf = HighlightPDF()
    pdf.add_page()

    # Add logo
    if os.path.exists(LOGO_PATH):
        pdf.image(LOGO_PATH, 10, 8, 20, 20)

    pdf.set_font("Arial", style='B', size=14)
    pdf.cell(200, 10, txt="AIxBI - Ultimate Document Plagiarism Report", ln=True, align='C')
    pdf.ln(20)

    pdf.set_font("Arial", size=12)
    pdf.multi_cell(0, 10, txt=f"Student: {student_name} ({student_id})")
    pdf.multi_cell(0, 10, txt=f"AI Probability: {ai_score:.2f}%")
    pdf.multi_cell(0, 10, txt=f"Plagiarism Score: {plagiarism_score:.2f}%")
    pdf.multi_cell(0, 10, txt=f"Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
    pdf.ln(10)

    pdf.multi_cell(0, 10, txt="Suspicious Sentences Detected:")
    if suspicious_sentences:
        for s in suspicious_sentences:
            pdf.add_highlighted_sentence(f"- {s}", (255, 200, 200))  # Red for suspicious
    else:
        pdf.multi_cell(0, 10, "None detected.")
    pdf.ln(10)

    pdf.multi_cell(0, 10, txt="Sample Detected Text (AI/Plagiarized Excerpt):")
    pdf.add_highlighted_sentence(sample_text, (255, 230, 200))  # Orange
    pdf.ln(10)

    pdf.multi_cell(0, 10, txt="Recommendations for Student:")
    recommendations = """1. Rewrite detected sentences in your own words.
2. Add citations for any copied or referenced material.
3. Avoid using AI content directly—use as guidance, not verbatim.
4. Use plagiarism tools and proofread before submission."""
    pdf.multi_cell(0, 10, recommendations)

    pdf.output(output_path)

# -----------------------------
# APP LOGIC
# -----------------------------
def login(user, pwd):
    if user == USERNAME and pwd == PASSWORD:
        return gr.update(visible=False), gr.update(visible=True), ""
    else:
        return gr.update(), gr.update(), "Invalid username or password!"

def analyze(student_name, student_id, file_obj):
    if file_obj is None or not student_name or not student_id:
        return "Please fill all fields and upload a document.", None, None, None, None

    text = extract_text(file_obj)
    if not text:
        return "Error: Could not read the file. Please upload a valid PDF, DOCX, or TXT.", None, None, None, None

    sentences = [s.strip() for s in text.split(". ") if len(s) > 30]

    # AI Detection
    ai_score = detect_ai_text(text) * 100

    # Live plagiarism
    plagiarism_score, suspicious_sentences = live_plagiarism_check(sentences)

    # Pick a sample suspicious excerpt for report
    sample_text = suspicious_sentences[0] if suspicious_sentences else text[:200]

    # Save to DB
    save_result(student_id, student_name, ai_score, plagiarism_score)

    # Generate PDF Report
    output_pdf = f"{student_id}_report.pdf"
    generate_pdf_report(
        student_name, student_id, ai_score, plagiarism_score,
        suspicious_sentences, sample_text, output_pdf
    )

    highlighted_text = "\n\n".join([f"⚠️ {s}" for s in suspicious_sentences]) if suspicious_sentences else "No suspicious sentences found."
    return f"Analysis Completed for {student_name} ({student_id})", round(ai_score,2), round(plagiarism_score,2), output_pdf, highlighted_text

def show_dashboard():
    df = load_results()
    return df

# -----------------------------
# GRADIO UI (LIGHT THEME & LOGO)
# -----------------------------
with gr.Blocks(theme="default") as demo:
    with gr.Row():
        if os.path.exists(LOGO_PATH):
            gr.Image(LOGO_PATH, elem_id="logo", show_label=False, scale=0.2)
        gr.Markdown("## **AIxBI - Ultimate Document Plagiarism Software**\n#### Professional Thesis & AI Content Detector", elem_id="title")

    # Login Section
    login_box = gr.Group(visible=True)
    with login_box:
        user = gr.Textbox(label="Username")
        pwd = gr.Textbox(label="Password", type="password")
        login_btn = gr.Button("Login", variant="primary")
        login_msg = gr.Markdown("")
    
    # Main App
    app_box = gr.Group(visible=False)
    with app_box:
        with gr.Tab("Check Thesis"):
            with gr.Row():
                student_name = gr.Textbox(label="Student Name")
                student_id = gr.Textbox(label="Student ID")
            file_upload = gr.File(label="Upload Document", file_types=[".pdf",".docx",".txt"])
            analyze_btn = gr.Button("Analyze Document", variant="primary")
            status = gr.Textbox(label="Status")
            ai_score = gr.Number(label="AI Probability (%)")
            plagiarism_score = gr.Number(label="Plagiarism Score (%)")
            suspicious_text = gr.Textbox(label="Suspicious Sentences Highlight", lines=10)
            pdf_output = gr.File(label="Download PDF Report")
            
        with gr.Tab("Summary Dashboard"):
            dashboard_btn = gr.Button("Refresh Dashboard", variant="secondary")
            dashboard = gr.Dataframe(headers=["id","student_id","student_name","ai_score","plagiarism_score","timestamp"])

    login_btn.click(login, inputs=[user, pwd], outputs=[login_box, app_box, login_msg])
    analyze_btn.click(analyze, inputs=[student_name, student_id, file_upload], outputs=[status, ai_score, plagiarism_score, pdf_output, suspicious_text])
    dashboard_btn.click(show_dashboard, outputs=[dashboard])

if __name__ == "__main__":
    demo.launch()