File size: 9,124 Bytes
f1090ff 4f7293e f1090ff 4f7293e f1090ff 1eca925 f1090ff 4f7293e f1090ff 966ceba f1090ff 4f7293e f1090ff 4f7293e f1090ff 4f7293e f1090ff 4f7293e f1090ff 4f7293e f1090ff 4f7293e f1090ff 4f7293e f1090ff 4f7293e f1090ff 4f7293e 1eca925 4f7293e 1d8231b 4f7293e 1d8231b 4f7293e 1d8231b 4f7293e 1eca925 4f7293e 1d8231b 4f7293e 1eca925 4f7293e 1eca925 f1090ff 4f7293e f1090ff 4f7293e f1090ff 4f7293e f1090ff 4f7293e f1090ff 1d8231b 4f7293e 1d8231b 4f7293e f1090ff 4f7293e f1090ff 4f7293e f1090ff 4f7293e f1090ff 4f7293e f1090ff 4f7293e f1090ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import gradio as gr
import pdfplumber, docx, sqlite3, os, random
from datetime import datetime
import pandas as pd
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from duckduckgo_search import DDGS
from fpdf import FPDF
# -----------------------------
# CONFIG
# -----------------------------
DB_NAME = "db.sqlite3"
USERNAME = "aixbi"
PASSWORD = "aixbi@123"
MAX_SENTENCES_CHECK = 10
LOGO_PATH = "aixbi.jpg" # Place your logo here
# -----------------------------
# DB INIT
# -----------------------------
def init_db():
conn = sqlite3.connect(DB_NAME)
c = conn.cursor()
c.execute("""CREATE TABLE IF NOT EXISTS results (
id INTEGER PRIMARY KEY AUTOINCREMENT,
student_id TEXT,
student_name TEXT,
ai_score REAL,
plagiarism_score REAL,
timestamp TEXT
)""")
conn.commit()
conn.close()
init_db()
# -----------------------------
# MODEL LOADING
# -----------------------------
embedder = SentenceTransformer('all-MiniLM-L6-v2')
tokenizer = AutoTokenizer.from_pretrained("SuperAnnotate/ai-detector")
model = AutoModelForSequenceClassification.from_pretrained("SuperAnnotate/ai-detector")
# -----------------------------
# SAFE TEXT EXTRACTION
# -----------------------------
def extract_text(file_obj):
try:
name = file_obj.name
if name.endswith(".pdf"):
with pdfplumber.open(file_obj.name) as pdf:
text = " ".join(page.extract_text() or "" for page in pdf.pages)
return text.strip() if text else None
elif name.endswith(".docx"):
doc = docx.Document(file_obj.name)
text = " ".join([p.text for p in doc.paragraphs])
return text.strip() if text else None
elif name.endswith(".txt"):
text = file_obj.read().decode("utf-8", errors="ignore")
return text.strip() if text else None
else:
return None
except Exception:
return None
def detect_ai_text(text):
inputs = tokenizer(text[:512], return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = model(**inputs)
score = torch.softmax(outputs.logits, dim=1)[0][1].item()
return score # probability of AI-generated
def live_plagiarism_check(sentences):
ddgs = DDGS()
samples = random.sample(sentences, min(MAX_SENTENCES_CHECK, len(sentences)))
suspicious_sentences = []
plagiarism_hits = 0
for sentence in samples:
results = list(ddgs.text(sentence, max_results=2))
if results:
plagiarism_hits += 1
suspicious_sentences.append(sentence)
score = (plagiarism_hits / len(samples)) * 100 if samples else 0
return score, suspicious_sentences
def save_result(student_id, student_name, ai_score, plagiarism_score):
conn = sqlite3.connect(DB_NAME)
c = conn.cursor()
c.execute("INSERT INTO results (student_id, student_name, ai_score, plagiarism_score, timestamp) VALUES (?,?,?,?,?)",
(student_id, student_name, ai_score, plagiarism_score, datetime.now().strftime("%Y-%m-%d %H:%M:%S")))
conn.commit()
conn.close()
def load_results():
conn = sqlite3.connect(DB_NAME)
df = pd.read_sql_query("SELECT * FROM results", conn)
conn.close()
return df
# -----------------------------
# PDF REPORT WITH LOGO & COLORS
# -----------------------------
class HighlightPDF(FPDF):
def add_highlighted_sentence(self, sentence, color):
self.set_fill_color(*color)
self.multi_cell(0, 10, sentence, fill=True)
self.ln(1)
def generate_pdf_report(student_name, student_id, ai_score, plagiarism_score, suspicious_sentences, sample_text, output_path):
pdf = HighlightPDF()
pdf.add_page()
# Add logo
if os.path.exists(LOGO_PATH):
pdf.image(LOGO_PATH, 10, 8, 20, 20)
pdf.set_font("Arial", style='B', size=14)
pdf.cell(200, 10, txt="AIxBI - Ultimate Document Plagiarism Report", ln=True, align='C')
pdf.ln(20)
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, txt=f"Student: {student_name} ({student_id})")
pdf.multi_cell(0, 10, txt=f"AI Probability: {ai_score:.2f}%")
pdf.multi_cell(0, 10, txt=f"Plagiarism Score: {plagiarism_score:.2f}%")
pdf.multi_cell(0, 10, txt=f"Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
pdf.ln(10)
pdf.multi_cell(0, 10, txt="Suspicious Sentences Detected:")
if suspicious_sentences:
for s in suspicious_sentences:
pdf.add_highlighted_sentence(f"- {s}", (255, 200, 200)) # Red for suspicious
else:
pdf.multi_cell(0, 10, "None detected.")
pdf.ln(10)
pdf.multi_cell(0, 10, txt="Sample Detected Text (AI/Plagiarized Excerpt):")
pdf.add_highlighted_sentence(sample_text, (255, 230, 200)) # Orange
pdf.ln(10)
pdf.multi_cell(0, 10, txt="Recommendations for Student:")
recommendations = """1. Rewrite detected sentences in your own words.
2. Add citations for any copied or referenced material.
3. Avoid using AI content directly—use as guidance, not verbatim.
4. Use plagiarism tools and proofread before submission."""
pdf.multi_cell(0, 10, recommendations)
pdf.output(output_path)
# -----------------------------
# APP LOGIC
# -----------------------------
def login(user, pwd):
if user == USERNAME and pwd == PASSWORD:
return gr.update(visible=False), gr.update(visible=True), ""
else:
return gr.update(), gr.update(), "Invalid username or password!"
def analyze(student_name, student_id, file_obj):
if file_obj is None or not student_name or not student_id:
return "Please fill all fields and upload a document.", None, None, None, None
text = extract_text(file_obj)
if not text:
return "Error: Could not read the file. Please upload a valid PDF, DOCX, or TXT.", None, None, None, None
sentences = [s.strip() for s in text.split(". ") if len(s) > 30]
# AI Detection
ai_score = detect_ai_text(text) * 100
# Live plagiarism
plagiarism_score, suspicious_sentences = live_plagiarism_check(sentences)
# Pick a sample suspicious excerpt for report
sample_text = suspicious_sentences[0] if suspicious_sentences else text[:200]
# Save to DB
save_result(student_id, student_name, ai_score, plagiarism_score)
# Generate PDF Report
output_pdf = f"{student_id}_report.pdf"
generate_pdf_report(
student_name, student_id, ai_score, plagiarism_score,
suspicious_sentences, sample_text, output_pdf
)
highlighted_text = "\n\n".join([f"⚠️ {s}" for s in suspicious_sentences]) if suspicious_sentences else "No suspicious sentences found."
return f"Analysis Completed for {student_name} ({student_id})", round(ai_score,2), round(plagiarism_score,2), output_pdf, highlighted_text
def show_dashboard():
df = load_results()
return df
# -----------------------------
# GRADIO UI (LIGHT THEME & LOGO)
# -----------------------------
with gr.Blocks(theme="default") as demo:
with gr.Row():
if os.path.exists(LOGO_PATH):
gr.Image(LOGO_PATH, elem_id="logo", show_label=False, scale=0.2)
gr.Markdown("## **AIxBI - Ultimate Document Plagiarism Software**\n#### Professional Thesis & AI Content Detector", elem_id="title")
# Login Section
login_box = gr.Group(visible=True)
with login_box:
user = gr.Textbox(label="Username")
pwd = gr.Textbox(label="Password", type="password")
login_btn = gr.Button("Login", variant="primary")
login_msg = gr.Markdown("")
# Main App
app_box = gr.Group(visible=False)
with app_box:
with gr.Tab("Check Thesis"):
with gr.Row():
student_name = gr.Textbox(label="Student Name")
student_id = gr.Textbox(label="Student ID")
file_upload = gr.File(label="Upload Document", file_types=[".pdf",".docx",".txt"])
analyze_btn = gr.Button("Analyze Document", variant="primary")
status = gr.Textbox(label="Status")
ai_score = gr.Number(label="AI Probability (%)")
plagiarism_score = gr.Number(label="Plagiarism Score (%)")
suspicious_text = gr.Textbox(label="Suspicious Sentences Highlight", lines=10)
pdf_output = gr.File(label="Download PDF Report")
with gr.Tab("Summary Dashboard"):
dashboard_btn = gr.Button("Refresh Dashboard", variant="secondary")
dashboard = gr.Dataframe(headers=["id","student_id","student_name","ai_score","plagiarism_score","timestamp"])
login_btn.click(login, inputs=[user, pwd], outputs=[login_box, app_box, login_msg])
analyze_btn.click(analyze, inputs=[student_name, student_id, file_upload], outputs=[status, ai_score, plagiarism_score, pdf_output, suspicious_text])
dashboard_btn.click(show_dashboard, outputs=[dashboard])
if __name__ == "__main__":
demo.launch()
|