Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
import pdfplumber, docx, sqlite3,
|
3 |
from datetime import datetime
|
4 |
import pandas as pd
|
5 |
from sentence_transformers import SentenceTransformer, util
|
@@ -7,14 +7,19 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
7 |
import torch
|
8 |
from duckduckgo_search import DDGS
|
9 |
from fpdf import FPDF
|
|
|
|
|
10 |
|
11 |
# -----------------------------
|
12 |
# CONFIG
|
13 |
# -----------------------------
|
14 |
DB_NAME = "db.sqlite3"
|
|
|
|
|
15 |
USERNAME = "aixbi"
|
16 |
PASSWORD = "aixbi@123"
|
17 |
-
|
|
|
18 |
|
19 |
# -----------------------------
|
20 |
# DB INIT
|
@@ -45,38 +50,38 @@ model = AutoModelForSequenceClassification.from_pretrained("hello-simpleai/chatg
|
|
45 |
# -----------------------------
|
46 |
# FUNCTIONS
|
47 |
# -----------------------------
|
48 |
-
def extract_text(
|
49 |
-
|
50 |
-
if
|
51 |
-
with pdfplumber.open(
|
52 |
return " ".join(page.extract_text() for page in pdf.pages if page.extract_text())
|
53 |
-
elif
|
54 |
-
doc = docx.Document(
|
55 |
return " ".join([p.text for p in doc.paragraphs])
|
56 |
-
else:
|
57 |
-
|
|
|
58 |
|
59 |
-
def detect_ai_text(text):
|
60 |
inputs = tokenizer(text[:512], return_tensors="pt", truncation=True)
|
61 |
with torch.no_grad():
|
62 |
outputs = model(**inputs)
|
63 |
score = torch.softmax(outputs.logits, dim=1)[0][1].item()
|
64 |
-
return score
|
65 |
|
66 |
-
def live_plagiarism_check(sentences):
|
67 |
ddgs = DDGS()
|
68 |
-
|
69 |
-
|
|
|
70 |
plagiarism_hits = 0
|
71 |
-
|
72 |
for sentence in samples:
|
73 |
results = list(ddgs.text(sentence, max_results=2))
|
74 |
if results:
|
75 |
plagiarism_hits += 1
|
76 |
-
|
77 |
-
|
78 |
-
score = (plagiarism_hits / len(samples)) * 100 if samples else 0
|
79 |
-
return score, suspicious_sentences
|
80 |
|
81 |
def save_result(student_id, student_name, ai_score, plagiarism_score):
|
82 |
conn = sqlite3.connect(DB_NAME)
|
@@ -92,29 +97,51 @@ def load_results():
|
|
92 |
conn.close()
|
93 |
return df
|
94 |
|
95 |
-
def generate_pdf_report(student_name, student_id, ai_score, plagiarism_score,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
pdf = FPDF()
|
97 |
pdf.add_page()
|
98 |
-
pdf.set_font("Arial", size=12)
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
pdf.
|
105 |
-
pdf.cell(200,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
pdf.ln(10)
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
pdf.output(
|
|
|
118 |
|
119 |
# -----------------------------
|
120 |
# APP LOGIC
|
@@ -125,35 +152,38 @@ def login(user, pwd):
|
|
125 |
else:
|
126 |
return gr.update(), gr.update(), "Invalid username or password!"
|
127 |
|
128 |
-
def analyze(student_name, student_id,
|
129 |
-
if
|
130 |
return "Please fill all fields and upload a document.", None, None, None
|
131 |
|
132 |
-
text = extract_text(
|
133 |
-
sentences = [s
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
137 |
|
138 |
-
|
139 |
-
plagiarism_score
|
140 |
|
141 |
-
# Save to DB
|
142 |
save_result(student_id, student_name, ai_score, plagiarism_score)
|
|
|
143 |
|
144 |
-
|
145 |
-
output_pdf = f"{student_id}_report.pdf"
|
146 |
-
generate_pdf_report(student_name, student_id, ai_score, plagiarism_score, suspicious_sentences, output_pdf)
|
147 |
-
|
148 |
-
highlighted_text = "\n\n".join([f"⚠️ {s}" for s in suspicious_sentences]) if suspicious_sentences else "No suspicious sentences found."
|
149 |
-
return f"Analysis Completed for {student_name} ({student_id})", round(ai_score,2), round(plagiarism_score,2), output_pdf, highlighted_text
|
150 |
|
151 |
def show_dashboard():
|
152 |
df = load_results()
|
153 |
return df
|
154 |
|
|
|
|
|
|
|
155 |
with gr.Blocks() as demo:
|
156 |
-
gr.
|
|
|
157 |
|
158 |
# Login Section
|
159 |
login_box = gr.Group(visible=True)
|
@@ -169,20 +199,19 @@ with gr.Blocks() as demo:
|
|
169 |
with gr.Tab("Check Thesis"):
|
170 |
student_name = gr.Textbox(label="Student Name")
|
171 |
student_id = gr.Textbox(label="Student ID")
|
172 |
-
file_upload = gr.File(label="Upload Document", file_types=[".pdf",".docx",".txt"])
|
173 |
analyze_btn = gr.Button("Analyze Document")
|
174 |
status = gr.Textbox(label="Status")
|
175 |
ai_score = gr.Number(label="AI Probability (%)")
|
176 |
plagiarism_score = gr.Number(label="Plagiarism Score (%)")
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
with gr.Tab("Summary Dashboard"):
|
181 |
dashboard_btn = gr.Button("Refresh Dashboard")
|
182 |
dashboard = gr.Dataframe(headers=["id","student_id","student_name","ai_score","plagiarism_score","timestamp"])
|
183 |
|
184 |
login_btn.click(login, inputs=[user, pwd], outputs=[login_box, app_box, login_msg])
|
185 |
-
analyze_btn.click(analyze, inputs=[student_name, student_id, file_upload], outputs=[status, ai_score, plagiarism_score,
|
186 |
dashboard_btn.click(show_dashboard, outputs=[dashboard])
|
187 |
|
188 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
import pdfplumber, docx, sqlite3, random, os
|
3 |
from datetime import datetime
|
4 |
import pandas as pd
|
5 |
from sentence_transformers import SentenceTransformer, util
|
|
|
7 |
import torch
|
8 |
from duckduckgo_search import DDGS
|
9 |
from fpdf import FPDF
|
10 |
+
import qrcode
|
11 |
+
from PIL import Image
|
12 |
|
13 |
# -----------------------------
|
14 |
# CONFIG
|
15 |
# -----------------------------
|
16 |
DB_NAME = "db.sqlite3"
|
17 |
+
REPORT_DIR = "reports"
|
18 |
+
LOGO_PATH = "aixbi.jpg" # Place your uploaded logo in the root
|
19 |
USERNAME = "aixbi"
|
20 |
PASSWORD = "aixbi@123"
|
21 |
+
|
22 |
+
os.makedirs(REPORT_DIR, exist_ok=True)
|
23 |
|
24 |
# -----------------------------
|
25 |
# DB INIT
|
|
|
50 |
# -----------------------------
|
51 |
# FUNCTIONS
|
52 |
# -----------------------------
|
53 |
+
def extract_text(file_path: str):
|
54 |
+
filepath = str(file_path)
|
55 |
+
if filepath.endswith(".pdf"):
|
56 |
+
with pdfplumber.open(filepath) as pdf:
|
57 |
return " ".join(page.extract_text() for page in pdf.pages if page.extract_text())
|
58 |
+
elif filepath.endswith(".docx"):
|
59 |
+
doc = docx.Document(filepath)
|
60 |
return " ".join([p.text for p in doc.paragraphs])
|
61 |
+
else: # txt
|
62 |
+
with open(filepath, "r", encoding="utf-8", errors="ignore") as f:
|
63 |
+
return f.read()
|
64 |
|
65 |
+
def detect_ai_text(text: str):
|
66 |
inputs = tokenizer(text[:512], return_tensors="pt", truncation=True)
|
67 |
with torch.no_grad():
|
68 |
outputs = model(**inputs)
|
69 |
score = torch.softmax(outputs.logits, dim=1)[0][1].item()
|
70 |
+
return score * 100
|
71 |
|
72 |
+
def live_plagiarism_check(sentences, n_samples=3):
|
73 |
ddgs = DDGS()
|
74 |
+
if not sentences:
|
75 |
+
return 0, []
|
76 |
+
samples = random.sample(sentences, min(n_samples, len(sentences)))
|
77 |
plagiarism_hits = 0
|
78 |
+
top_sentences = []
|
79 |
for sentence in samples:
|
80 |
results = list(ddgs.text(sentence, max_results=2))
|
81 |
if results:
|
82 |
plagiarism_hits += 1
|
83 |
+
top_sentences.append(sentence)
|
84 |
+
return (plagiarism_hits / len(samples)) * 100, top_sentences
|
|
|
|
|
85 |
|
86 |
def save_result(student_id, student_name, ai_score, plagiarism_score):
|
87 |
conn = sqlite3.connect(DB_NAME)
|
|
|
97 |
conn.close()
|
98 |
return df
|
99 |
|
100 |
+
def generate_pdf_report(student_name, student_id, ai_score, plagiarism_score, top_sentences):
|
101 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
102 |
+
verdict = "Likely Original"
|
103 |
+
if ai_score > 70 or plagiarism_score > 50:
|
104 |
+
verdict = "⚠ High AI/Plagiarism Risk"
|
105 |
+
elif ai_score > 40 or plagiarism_score > 30:
|
106 |
+
verdict = "Moderate Risk"
|
107 |
+
|
108 |
+
filename = f"{REPORT_DIR}/Report_{student_id}_{int(datetime.now().timestamp())}.pdf"
|
109 |
+
|
110 |
pdf = FPDF()
|
111 |
pdf.add_page()
|
|
|
112 |
|
113 |
+
# Add Logo
|
114 |
+
if os.path.exists(LOGO_PATH):
|
115 |
+
pdf.image(LOGO_PATH, 10, 8, 33)
|
116 |
+
|
117 |
+
pdf.set_font("Arial", "B", 18)
|
118 |
+
pdf.cell(200, 20, "AIxBI - Thesis Analysis Report", ln=True, align="C")
|
119 |
+
pdf.ln(20)
|
120 |
+
|
121 |
+
pdf.set_font("Arial", size=12)
|
122 |
+
pdf.cell(200, 10, f"Student Name: {student_name}", ln=True)
|
123 |
+
pdf.cell(200, 10, f"Student ID: {student_id}", ln=True)
|
124 |
+
pdf.cell(200, 10, f"AI Probability: {ai_score:.2f}%", ln=True)
|
125 |
+
pdf.cell(200, 10, f"Plagiarism Score: {plagiarism_score:.2f}%", ln=True)
|
126 |
+
pdf.cell(200, 10, f"Verdict: {verdict}", ln=True)
|
127 |
+
pdf.cell(200, 10, f"Analysis Date: {timestamp}", ln=True)
|
128 |
pdf.ln(10)
|
129 |
|
130 |
+
# Highlight top plagiarized sentences
|
131 |
+
if top_sentences:
|
132 |
+
pdf.set_text_color(255, 0, 0)
|
133 |
+
pdf.multi_cell(0, 10, "Top Plagiarized Sentences:\n" + "\n\n".join(top_sentences))
|
134 |
+
pdf.set_text_color(0, 0, 0)
|
135 |
+
|
136 |
+
# Generate QR Code
|
137 |
+
qr_data = f"AIxBI Verification\nID:{student_id}\nAI:{ai_score:.2f}% Plag:{plagiarism_score:.2f}%\nTime:{timestamp}"
|
138 |
+
qr_img = qrcode.make(qr_data)
|
139 |
+
qr_path = "qr_temp.png"
|
140 |
+
qr_img.save(qr_path)
|
141 |
+
pdf.image(qr_path, x=160, y=230, w=40)
|
142 |
|
143 |
+
pdf.output(filename)
|
144 |
+
return filename
|
145 |
|
146 |
# -----------------------------
|
147 |
# APP LOGIC
|
|
|
152 |
else:
|
153 |
return gr.update(), gr.update(), "Invalid username or password!"
|
154 |
|
155 |
+
def analyze(student_name, student_id, file_path):
|
156 |
+
if file_path is None or not student_name or not student_id:
|
157 |
return "Please fill all fields and upload a document.", None, None, None
|
158 |
|
159 |
+
text = extract_text(file_path)
|
160 |
+
sentences = [s for s in text.split(". ") if len(s) > 20]
|
161 |
+
|
162 |
+
ai_score = detect_ai_text(text)
|
163 |
+
local_score = 0
|
164 |
+
if sentences:
|
165 |
+
embeddings = embedder.encode(sentences, convert_to_tensor=True)
|
166 |
+
cosine_scores = util.cos_sim(embeddings, embeddings)
|
167 |
+
local_score = (cosine_scores > 0.95).float().mean().item() * 100
|
168 |
|
169 |
+
live_score, top_sentences = live_plagiarism_check(sentences)
|
170 |
+
plagiarism_score = max(local_score, live_score)
|
171 |
|
|
|
172 |
save_result(student_id, student_name, ai_score, plagiarism_score)
|
173 |
+
pdf_path = generate_pdf_report(student_name, student_id, ai_score, plagiarism_score, top_sentences)
|
174 |
|
175 |
+
return f"Analysis Completed for {student_name} ({student_id})", round(ai_score,2), round(plagiarism_score,2), pdf_path
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
def show_dashboard():
|
178 |
df = load_results()
|
179 |
return df
|
180 |
|
181 |
+
# -----------------------------
|
182 |
+
# GRADIO INTERFACE
|
183 |
+
# -----------------------------
|
184 |
with gr.Blocks() as demo:
|
185 |
+
gr.Image(LOGO_PATH, label="AIxBI", show_label=False)
|
186 |
+
gr.Markdown("# AIxBI - Plagiarism & AI Detection with PDF Reports")
|
187 |
|
188 |
# Login Section
|
189 |
login_box = gr.Group(visible=True)
|
|
|
199 |
with gr.Tab("Check Thesis"):
|
200 |
student_name = gr.Textbox(label="Student Name")
|
201 |
student_id = gr.Textbox(label="Student ID")
|
202 |
+
file_upload = gr.File(label="Upload Document", file_types=[".pdf",".docx",".txt"], type="filepath")
|
203 |
analyze_btn = gr.Button("Analyze Document")
|
204 |
status = gr.Textbox(label="Status")
|
205 |
ai_score = gr.Number(label="AI Probability (%)")
|
206 |
plagiarism_score = gr.Number(label="Plagiarism Score (%)")
|
207 |
+
pdf_report = gr.File(label="Download PDF Report")
|
208 |
+
|
|
|
209 |
with gr.Tab("Summary Dashboard"):
|
210 |
dashboard_btn = gr.Button("Refresh Dashboard")
|
211 |
dashboard = gr.Dataframe(headers=["id","student_id","student_name","ai_score","plagiarism_score","timestamp"])
|
212 |
|
213 |
login_btn.click(login, inputs=[user, pwd], outputs=[login_box, app_box, login_msg])
|
214 |
+
analyze_btn.click(analyze, inputs=[student_name, student_id, file_upload], outputs=[status, ai_score, plagiarism_score, pdf_report])
|
215 |
dashboard_btn.click(show_dashboard, outputs=[dashboard])
|
216 |
|
217 |
if __name__ == "__main__":
|