Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
-
import pdfplumber, docx, sqlite3, random
|
3 |
from datetime import datetime
|
4 |
import pandas as pd
|
5 |
from sentence_transformers import SentenceTransformer, util
|
6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
import torch
|
8 |
from duckduckgo_search import DDGS
|
|
|
9 |
|
10 |
# -----------------------------
|
11 |
# CONFIG
|
@@ -13,6 +14,7 @@ from duckduckgo_search import DDGS
|
|
13 |
DB_NAME = "db.sqlite3"
|
14 |
USERNAME = "aixbi"
|
15 |
PASSWORD = "aixbi@123"
|
|
|
16 |
|
17 |
# -----------------------------
|
18 |
# DB INIT
|
@@ -43,39 +45,38 @@ model = AutoModelForSequenceClassification.from_pretrained("hello-simpleai/chatg
|
|
43 |
# -----------------------------
|
44 |
# FUNCTIONS
|
45 |
# -----------------------------
|
46 |
-
def extract_text(
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
if filepath.endswith(".pdf"):
|
51 |
-
with pdfplumber.open(filepath) as pdf:
|
52 |
return " ".join(page.extract_text() for page in pdf.pages if page.extract_text())
|
53 |
-
elif
|
54 |
-
doc = docx.Document(
|
55 |
return " ".join([p.text for p in doc.paragraphs])
|
56 |
-
else:
|
57 |
-
|
58 |
-
return f.read()
|
59 |
|
60 |
def detect_ai_text(text):
|
61 |
inputs = tokenizer(text[:512], return_tensors="pt", truncation=True)
|
62 |
with torch.no_grad():
|
63 |
outputs = model(**inputs)
|
64 |
score = torch.softmax(outputs.logits, dim=1)[0][1].item()
|
65 |
-
return score
|
66 |
|
67 |
-
def live_plagiarism_check(sentences
|
68 |
-
"""Randomly samples sentences and checks them online."""
|
69 |
ddgs = DDGS()
|
70 |
-
|
71 |
-
|
72 |
-
samples = random.sample(sentences, min(n_samples, len(sentences)))
|
73 |
plagiarism_hits = 0
|
|
|
74 |
for sentence in samples:
|
75 |
results = list(ddgs.text(sentence, max_results=2))
|
76 |
if results:
|
77 |
plagiarism_hits += 1
|
78 |
-
|
|
|
|
|
|
|
79 |
|
80 |
def save_result(student_id, student_name, ai_score, plagiarism_score):
|
81 |
conn = sqlite3.connect(DB_NAME)
|
@@ -91,6 +92,30 @@ def load_results():
|
|
91 |
conn.close()
|
92 |
return df
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
# -----------------------------
|
95 |
# APP LOGIC
|
96 |
# -----------------------------
|
@@ -100,42 +125,35 @@ def login(user, pwd):
|
|
100 |
else:
|
101 |
return gr.update(), gr.update(), "Invalid username or password!"
|
102 |
|
103 |
-
def analyze(student_name, student_id,
|
104 |
-
if
|
105 |
-
return "Please fill all fields and upload a document.", None, None
|
106 |
-
|
107 |
-
text = extract_text(file_path)
|
108 |
-
sentences = [s for s in text.split(". ") if len(s) > 20]
|
109 |
|
|
|
|
|
|
|
110 |
# AI Detection
|
111 |
-
ai_score = detect_ai_text(text)
|
112 |
-
|
113 |
-
# Local similarity check
|
114 |
-
if sentences:
|
115 |
-
embeddings = embedder.encode(sentences, convert_to_tensor=True)
|
116 |
-
cosine_scores = util.cos_sim(embeddings, embeddings)
|
117 |
-
local_score = (cosine_scores > 0.95).float().mean().item() * 100
|
118 |
-
else:
|
119 |
-
local_score = 0
|
120 |
|
121 |
-
# Live
|
122 |
-
|
123 |
-
plagiarism_score = max(local_score, live_score)
|
124 |
|
125 |
# Save to DB
|
126 |
save_result(student_id, student_name, ai_score, plagiarism_score)
|
127 |
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
def show_dashboard():
|
131 |
df = load_results()
|
132 |
return df
|
133 |
|
134 |
-
# -----------------------------
|
135 |
-
# GRADIO INTERFACE
|
136 |
-
# -----------------------------
|
137 |
with gr.Blocks() as demo:
|
138 |
-
gr.Markdown("# AIxBI -
|
139 |
|
140 |
# Login Section
|
141 |
login_box = gr.Group(visible=True)
|
@@ -151,18 +169,20 @@ with gr.Blocks() as demo:
|
|
151 |
with gr.Tab("Check Thesis"):
|
152 |
student_name = gr.Textbox(label="Student Name")
|
153 |
student_id = gr.Textbox(label="Student ID")
|
154 |
-
file_upload = gr.File(label="Upload Document", file_types=[".pdf",".docx",".txt"]
|
155 |
analyze_btn = gr.Button("Analyze Document")
|
156 |
status = gr.Textbox(label="Status")
|
157 |
ai_score = gr.Number(label="AI Probability (%)")
|
158 |
plagiarism_score = gr.Number(label="Plagiarism Score (%)")
|
159 |
-
|
|
|
|
|
160 |
with gr.Tab("Summary Dashboard"):
|
161 |
dashboard_btn = gr.Button("Refresh Dashboard")
|
162 |
dashboard = gr.Dataframe(headers=["id","student_id","student_name","ai_score","plagiarism_score","timestamp"])
|
163 |
|
164 |
login_btn.click(login, inputs=[user, pwd], outputs=[login_box, app_box, login_msg])
|
165 |
-
analyze_btn.click(analyze, inputs=[student_name, student_id, file_upload], outputs=[status, ai_score, plagiarism_score])
|
166 |
dashboard_btn.click(show_dashboard, outputs=[dashboard])
|
167 |
|
168 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
import pdfplumber, docx, sqlite3, os, random
|
3 |
from datetime import datetime
|
4 |
import pandas as pd
|
5 |
from sentence_transformers import SentenceTransformer, util
|
6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
import torch
|
8 |
from duckduckgo_search import DDGS
|
9 |
+
from fpdf import FPDF
|
10 |
|
11 |
# -----------------------------
|
12 |
# CONFIG
|
|
|
14 |
DB_NAME = "db.sqlite3"
|
15 |
USERNAME = "aixbi"
|
16 |
PASSWORD = "aixbi@123"
|
17 |
+
MAX_SENTENCES_CHECK = 10
|
18 |
|
19 |
# -----------------------------
|
20 |
# DB INIT
|
|
|
45 |
# -----------------------------
|
46 |
# FUNCTIONS
|
47 |
# -----------------------------
|
48 |
+
def extract_text(file_obj):
|
49 |
+
name = file_obj.name
|
50 |
+
if name.endswith(".pdf"):
|
51 |
+
with pdfplumber.open(file_obj.name) as pdf:
|
|
|
|
|
52 |
return " ".join(page.extract_text() for page in pdf.pages if page.extract_text())
|
53 |
+
elif name.endswith(".docx"):
|
54 |
+
doc = docx.Document(file_obj.name)
|
55 |
return " ".join([p.text for p in doc.paragraphs])
|
56 |
+
else:
|
57 |
+
return file_obj.read().decode("utf-8")
|
|
|
58 |
|
59 |
def detect_ai_text(text):
|
60 |
inputs = tokenizer(text[:512], return_tensors="pt", truncation=True)
|
61 |
with torch.no_grad():
|
62 |
outputs = model(**inputs)
|
63 |
score = torch.softmax(outputs.logits, dim=1)[0][1].item()
|
64 |
+
return score # probability of AI-generated
|
65 |
|
66 |
+
def live_plagiarism_check(sentences):
|
|
|
67 |
ddgs = DDGS()
|
68 |
+
samples = random.sample(sentences, min(MAX_SENTENCES_CHECK, len(sentences)))
|
69 |
+
suspicious_sentences = []
|
|
|
70 |
plagiarism_hits = 0
|
71 |
+
|
72 |
for sentence in samples:
|
73 |
results = list(ddgs.text(sentence, max_results=2))
|
74 |
if results:
|
75 |
plagiarism_hits += 1
|
76 |
+
suspicious_sentences.append(sentence)
|
77 |
+
|
78 |
+
score = (plagiarism_hits / len(samples)) * 100 if samples else 0
|
79 |
+
return score, suspicious_sentences
|
80 |
|
81 |
def save_result(student_id, student_name, ai_score, plagiarism_score):
|
82 |
conn = sqlite3.connect(DB_NAME)
|
|
|
92 |
conn.close()
|
93 |
return df
|
94 |
|
95 |
+
def generate_pdf_report(student_name, student_id, ai_score, plagiarism_score, suspicious_sentences, output_path):
|
96 |
+
pdf = FPDF()
|
97 |
+
pdf.add_page()
|
98 |
+
pdf.set_font("Arial", size=12)
|
99 |
+
|
100 |
+
pdf.cell(200, 10, txt="AIxBI - Student Thesis Analysis Report", ln=True, align='C')
|
101 |
+
pdf.ln(10)
|
102 |
+
pdf.cell(200, 10, txt=f"Student: {student_name} ({student_id})", ln=True)
|
103 |
+
pdf.cell(200, 10, txt=f"AI Probability: {ai_score:.2f}%", ln=True)
|
104 |
+
pdf.cell(200, 10, txt=f"Plagiarism Score: {plagiarism_score:.2f}%", ln=True)
|
105 |
+
pdf.cell(200, 10, txt=f"Timestamp: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True)
|
106 |
+
pdf.ln(10)
|
107 |
+
|
108 |
+
pdf.multi_cell(0, 10, txt="Suspicious Sentences (Possible Plagiarism or AI-generated):")
|
109 |
+
pdf.ln(5)
|
110 |
+
if suspicious_sentences:
|
111 |
+
for s in suspicious_sentences:
|
112 |
+
pdf.multi_cell(0, 10, f"- {s}")
|
113 |
+
pdf.ln(2)
|
114 |
+
else:
|
115 |
+
pdf.multi_cell(0, 10, "None detected.")
|
116 |
+
|
117 |
+
pdf.output(output_path)
|
118 |
+
|
119 |
# -----------------------------
|
120 |
# APP LOGIC
|
121 |
# -----------------------------
|
|
|
125 |
else:
|
126 |
return gr.update(), gr.update(), "Invalid username or password!"
|
127 |
|
128 |
+
def analyze(student_name, student_id, file_obj):
|
129 |
+
if file_obj is None or not student_name or not student_id:
|
130 |
+
return "Please fill all fields and upload a document.", None, None, None
|
|
|
|
|
|
|
131 |
|
132 |
+
text = extract_text(file_obj)
|
133 |
+
sentences = [s.strip() for s in text.split(". ") if len(s) > 30]
|
134 |
+
|
135 |
# AI Detection
|
136 |
+
ai_score = detect_ai_text(text) * 100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
# Live plagiarism
|
139 |
+
plagiarism_score, suspicious_sentences = live_plagiarism_check(sentences)
|
|
|
140 |
|
141 |
# Save to DB
|
142 |
save_result(student_id, student_name, ai_score, plagiarism_score)
|
143 |
|
144 |
+
# Generate PDF Report
|
145 |
+
output_pdf = f"{student_id}_report.pdf"
|
146 |
+
generate_pdf_report(student_name, student_id, ai_score, plagiarism_score, suspicious_sentences, output_pdf)
|
147 |
+
|
148 |
+
highlighted_text = "\n\n".join([f"⚠️ {s}" for s in suspicious_sentences]) if suspicious_sentences else "No suspicious sentences found."
|
149 |
+
return f"Analysis Completed for {student_name} ({student_id})", round(ai_score,2), round(plagiarism_score,2), output_pdf, highlighted_text
|
150 |
|
151 |
def show_dashboard():
|
152 |
df = load_results()
|
153 |
return df
|
154 |
|
|
|
|
|
|
|
155 |
with gr.Blocks() as demo:
|
156 |
+
gr.Markdown("# AIxBI - Professional Thesis Checker")
|
157 |
|
158 |
# Login Section
|
159 |
login_box = gr.Group(visible=True)
|
|
|
169 |
with gr.Tab("Check Thesis"):
|
170 |
student_name = gr.Textbox(label="Student Name")
|
171 |
student_id = gr.Textbox(label="Student ID")
|
172 |
+
file_upload = gr.File(label="Upload Document", file_types=[".pdf",".docx",".txt"])
|
173 |
analyze_btn = gr.Button("Analyze Document")
|
174 |
status = gr.Textbox(label="Status")
|
175 |
ai_score = gr.Number(label="AI Probability (%)")
|
176 |
plagiarism_score = gr.Number(label="Plagiarism Score (%)")
|
177 |
+
suspicious_text = gr.Textbox(label="Suspicious Sentences Highlight", lines=10)
|
178 |
+
pdf_output = gr.File(label="Download PDF Report")
|
179 |
+
|
180 |
with gr.Tab("Summary Dashboard"):
|
181 |
dashboard_btn = gr.Button("Refresh Dashboard")
|
182 |
dashboard = gr.Dataframe(headers=["id","student_id","student_name","ai_score","plagiarism_score","timestamp"])
|
183 |
|
184 |
login_btn.click(login, inputs=[user, pwd], outputs=[login_box, app_box, login_msg])
|
185 |
+
analyze_btn.click(analyze, inputs=[student_name, student_id, file_upload], outputs=[status, ai_score, plagiarism_score, pdf_output, suspicious_text])
|
186 |
dashboard_btn.click(show_dashboard, outputs=[dashboard])
|
187 |
|
188 |
if __name__ == "__main__":
|