Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pdfplumber, docx, sqlite3, os, random
|
3 |
+
from datetime import datetime
|
4 |
+
import pandas as pd
|
5 |
+
from sentence_transformers import SentenceTransformer, util
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
+
import torch
|
8 |
+
from duckduckgo_search import DDGS
|
9 |
+
|
10 |
+
# -----------------------------
|
11 |
+
# CONFIG
|
12 |
+
# -----------------------------
|
13 |
+
DB_NAME = "db.sqlite3"
|
14 |
+
USERNAME = "aixbi"
|
15 |
+
PASSWORD = "aixbi@123"
|
16 |
+
|
17 |
+
# -----------------------------
|
18 |
+
# DB INIT
|
19 |
+
# -----------------------------
|
20 |
+
def init_db():
|
21 |
+
conn = sqlite3.connect(DB_NAME)
|
22 |
+
c = conn.cursor()
|
23 |
+
c.execute("""CREATE TABLE IF NOT EXISTS results (
|
24 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
25 |
+
student_id TEXT,
|
26 |
+
student_name TEXT,
|
27 |
+
ai_score REAL,
|
28 |
+
plagiarism_score REAL,
|
29 |
+
timestamp TEXT
|
30 |
+
)""")
|
31 |
+
conn.commit()
|
32 |
+
conn.close()
|
33 |
+
|
34 |
+
init_db()
|
35 |
+
|
36 |
+
# -----------------------------
|
37 |
+
# MODEL LOADING (only once)
|
38 |
+
# -----------------------------
|
39 |
+
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained("hello-simpleai/chatgpt-detector-roberta")
|
41 |
+
model = AutoModelForSequenceClassification.from_pretrained("hello-simpleai/chatgpt-detector-roberta")
|
42 |
+
|
43 |
+
# -----------------------------
|
44 |
+
# FUNCTIONS
|
45 |
+
# -----------------------------
|
46 |
+
def extract_text(file_obj):
|
47 |
+
name = file_obj.name
|
48 |
+
if name.endswith(".pdf"):
|
49 |
+
with pdfplumber.open(file_obj.name) as pdf:
|
50 |
+
return " ".join(page.extract_text() for page in pdf.pages if page.extract_text())
|
51 |
+
elif name.endswith(".docx"):
|
52 |
+
doc = docx.Document(file_obj.name)
|
53 |
+
return " ".join([p.text for p in doc.paragraphs])
|
54 |
+
else:
|
55 |
+
return file_obj.read().decode("utf-8")
|
56 |
+
|
57 |
+
def detect_ai_text(text):
|
58 |
+
inputs = tokenizer(text[:512], return_tensors="pt", truncation=True)
|
59 |
+
with torch.no_grad():
|
60 |
+
outputs = model(**inputs)
|
61 |
+
score = torch.softmax(outputs.logits, dim=1)[0][1].item()
|
62 |
+
return score # probability of AI-generated
|
63 |
+
|
64 |
+
def live_plagiarism_check(sentences, n_samples=3):
|
65 |
+
ddgs = DDGS()
|
66 |
+
samples = random.sample(sentences, min(n_samples, len(sentences)))
|
67 |
+
plagiarism_hits = 0
|
68 |
+
for sentence in samples:
|
69 |
+
results = list(ddgs.text(sentence, max_results=2))
|
70 |
+
if results:
|
71 |
+
plagiarism_hits += 1
|
72 |
+
return (plagiarism_hits / len(samples)) * 100
|
73 |
+
|
74 |
+
def save_result(student_id, student_name, ai_score, plagiarism_score):
|
75 |
+
conn = sqlite3.connect(DB_NAME)
|
76 |
+
c = conn.cursor()
|
77 |
+
c.execute("INSERT INTO results (student_id, student_name, ai_score, plagiarism_score, timestamp) VALUES (?,?,?,?,?)",
|
78 |
+
(student_id, student_name, ai_score, plagiarism_score, datetime.now().strftime("%Y-%m-%d %H:%M:%S")))
|
79 |
+
conn.commit()
|
80 |
+
conn.close()
|
81 |
+
|
82 |
+
def load_results():
|
83 |
+
conn = sqlite3.connect(DB_NAME)
|
84 |
+
df = pd.read_sql_query("SELECT * FROM results", conn)
|
85 |
+
conn.close()
|
86 |
+
return df
|
87 |
+
|
88 |
+
# -----------------------------
|
89 |
+
# APP LOGIC
|
90 |
+
# -----------------------------
|
91 |
+
def login(user, pwd):
|
92 |
+
if user == USERNAME and pwd == PASSWORD:
|
93 |
+
return gr.update(visible=False), gr.update(visible=True), ""
|
94 |
+
else:
|
95 |
+
return gr.update(), gr.update(), "Invalid username or password!"
|
96 |
+
|
97 |
+
def analyze(student_name, student_id, file_obj):
|
98 |
+
if file_obj is None or not student_name or not student_id:
|
99 |
+
return "Please fill all fields and upload a document.", None, None
|
100 |
+
|
101 |
+
text = extract_text(file_obj)
|
102 |
+
sentences = [s for s in text.split(". ") if len(s) > 20]
|
103 |
+
|
104 |
+
# AI Detection
|
105 |
+
ai_score = detect_ai_text(text) * 100
|
106 |
+
|
107 |
+
# Local similarity
|
108 |
+
embeddings = embedder.encode(sentences, convert_to_tensor=True)
|
109 |
+
cosine_scores = util.cos_sim(embeddings, embeddings)
|
110 |
+
local_score = (cosine_scores > 0.95).float().mean().item() * 100
|
111 |
+
|
112 |
+
# Live web check
|
113 |
+
live_score = live_plagiarism_check(sentences)
|
114 |
+
plagiarism_score = max(local_score, live_score)
|
115 |
+
|
116 |
+
# Save to DB
|
117 |
+
save_result(student_id, student_name, ai_score, plagiarism_score)
|
118 |
+
|
119 |
+
return f"Analysis Completed for {student_name} ({student_id})", round(ai_score,2), round(plagiarism_score,2)
|
120 |
+
|
121 |
+
def show_dashboard():
|
122 |
+
df = load_results()
|
123 |
+
return df
|
124 |
+
|
125 |
+
with gr.Blocks() as demo:
|
126 |
+
gr.Markdown("# AIxBI - Plagiarism & AI Detection")
|
127 |
+
|
128 |
+
# Login Section
|
129 |
+
login_box = gr.Group(visible=True)
|
130 |
+
with login_box:
|
131 |
+
user = gr.Textbox(label="Username")
|
132 |
+
pwd = gr.Textbox(label="Password", type="password")
|
133 |
+
login_btn = gr.Button("Login")
|
134 |
+
login_msg = gr.Markdown("")
|
135 |
+
|
136 |
+
# Main App
|
137 |
+
app_box = gr.Group(visible=False)
|
138 |
+
with app_box:
|
139 |
+
with gr.Tab("Check Thesis"):
|
140 |
+
student_name = gr.Textbox(label="Student Name")
|
141 |
+
student_id = gr.Textbox(label="Student ID")
|
142 |
+
file_upload = gr.File(label="Upload Document", file_types=[".pdf",".docx",".txt"])
|
143 |
+
analyze_btn = gr.Button("Analyze Document")
|
144 |
+
status = gr.Textbox(label="Status")
|
145 |
+
ai_score = gr.Number(label="AI Probability (%)")
|
146 |
+
plagiarism_score = gr.Number(label="Plagiarism Score (%)")
|
147 |
+
|
148 |
+
with gr.Tab("Summary Dashboard"):
|
149 |
+
dashboard_btn = gr.Button("Refresh Dashboard")
|
150 |
+
dashboard = gr.Dataframe(headers=["id","student_id","student_name","ai_score","plagiarism_score","timestamp"])
|
151 |
+
|
152 |
+
login_btn.click(login, inputs=[user, pwd], outputs=[login_box, app_box, login_msg])
|
153 |
+
analyze_btn.click(analyze, inputs=[student_name, student_id, file_upload], outputs=[status, ai_score, plagiarism_score])
|
154 |
+
dashboard_btn.click(show_dashboard, outputs=[dashboard])
|
155 |
+
|
156 |
+
if __name__ == "__main__":
|
157 |
+
demo.launch()
|