File size: 1,195 Bytes
a681e0a
a7d2103
ff694a9
a681e0a
 
436b48d
a681e0a
a7d2103
2b716d2
a7d2103
a681e0a
 
 
 
 
ff694a9
a681e0a
 
 
a7d2103
 
2b716d2
a7d2103
2b716d2
a7d2103
 
 
 
2b716d2
a7d2103
 
2b716d2
a7d2103
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import streamlit as st

# Set device (GPU if available, otherwise CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("mavinsao/mi-roberta-classification")
model = AutoModelForSequenceClassification.from_pretrained("mavinsao/mi-roberta-classification").to(device)

# Streamlit app
st.title('Mental Illness Prediction')

# Input text area for user input
sentence = st.text_area("Enter the long sentence to predict your mental illness state:")

# Prediction button
if st.button('Predict'):
    # Tokenize the input sentence
    inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True).to(device)

    # Forward pass
    with torch.no_grad():
        outputs = model(**inputs)

    # Get predicted probabilities
    probabilities = torch.sigmoid(outputs.logits).squeeze(dim=0)

    # Get predicted labels with probability greater than 0.5
    predicted_labels = [label for i, label in enumerate(tokenizer.labels) if probabilities[i] > 0.5]

    st.write("Predicted labels:", predicted_labels)