mavinsao commited on
Commit
2b716d2
·
verified ·
1 Parent(s): 075fc3c
Files changed (1) hide show
  1. app.py +10 -48
app.py CHANGED
@@ -10,52 +10,8 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
  # Load model directly
11
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
12
 
13
- tokenizer = AutoTokenizer.from_pretrained("mavinsao/mi-roberta-mental-illness")
14
- model = AutoModelForSequenceClassification.from_pretrained("mavinsao/mi-roberta-mental-illness")
15
-
16
- # Create a common label map
17
- common_label_map = {'ADHD': 0, 'Anxiety': 1, 'bipolar': 2, 'BPD': 3, 'depression': 4, 'OCD': 5, 'ptsd': 6, 'none': 7}
18
- num_classes = 8
19
-
20
-
21
- def predict_labels(sentence, tokenizer, model, device, threshold=0.5, top_n=5):
22
- # Tokenize the sentence and create attention mask
23
- tokenized_input = tokenizer(
24
- sentence,
25
- add_special_tokens=True,
26
- max_length=512,
27
- padding="max_length",
28
- truncation=True,
29
- return_tensors="pt"
30
- )
31
-
32
- # Move the input tensors to the device
33
- input_ids = tokenized_input['input_ids'].to(device)
34
- attention_mask = tokenized_input['attention_mask'].to(device)
35
-
36
- # Set the model to evaluation mode
37
- model.eval()
38
-
39
- # Make a prediction
40
- with torch.no_grad():
41
- output = model(input_ids, attention_mask)
42
-
43
- # Apply thresholding to the logits to obtain predicted labels
44
- logits = output.logits
45
- sigmoid_output = torch.sigmoid(logits.squeeze(dim=0))
46
- indices_above_threshold = torch.arange(logits.shape[-1], device=device)[sigmoid_output > threshold]
47
-
48
- # Sort the indices by their sigmoid values
49
- sorted_indices = indices_above_threshold[torch.argsort(sigmoid_output[indices_above_threshold], descending=True)]
50
-
51
- # Map the predicted label indices back to the original class labels using the common label map
52
- predicted_labels_with_score = [{"label": list(common_label_map.keys())[index], "score": sigmoid_output[index].item()} for index in sorted_indices[:top_n]]
53
-
54
- # Create a JSON object with labels, scores, and short forms
55
- json_result = [{"label": entry["label"], "score": entry["score"]} for entry in predicted_labels_with_score]
56
-
57
- return json.dumps(json_result, indent=4)
58
-
59
 
60
  # Streamlit app
61
  st.title('Mental Illness Prediction')
@@ -63,8 +19,14 @@ st.title('Mental Illness Prediction')
63
  # Input text area for user input
64
  sentence = st.text_area("Enter the long sentence to predict your mental illness state:")
65
 
 
66
  # Prediction button
67
  if st.button('Predict'):
68
  # Predict label
69
- predicted_response = predict_labels(sentence, tokenizer, model, device)
70
- st.json(predicted_response)
 
 
 
 
 
 
10
  # Load model directly
11
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
12
 
13
+ tokenizer = AutoTokenizer.from_pretrained("mavinsao/mi-roberta-classification")
14
+ model = AutoModelForSequenceClassification.from_pretrained("mavinsao/mi-roberta-classification")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  # Streamlit app
17
  st.title('Mental Illness Prediction')
 
19
  # Input text area for user input
20
  sentence = st.text_area("Enter the long sentence to predict your mental illness state:")
21
 
22
+
23
  # Prediction button
24
  if st.button('Predict'):
25
  # Predict label
26
+
27
+ with torch.no_grad():
28
+ logits = model(sentence).logits
29
+
30
+ predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
31
+
32
+ st.json(predicted_class_ids)