fix
Browse files
app.py
CHANGED
@@ -1,17 +1,13 @@
|
|
1 |
import torch
|
2 |
-
import
|
3 |
-
from transformers import RobertaTokenizer, RobertaModel
|
4 |
-
import json
|
5 |
import streamlit as st
|
6 |
|
7 |
# Set device (GPU if available, otherwise CPU)
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
|
10 |
-
# Load model
|
11 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
12 |
-
|
13 |
tokenizer = AutoTokenizer.from_pretrained("mavinsao/mi-roberta-classification")
|
14 |
-
model = AutoModelForSequenceClassification.from_pretrained("mavinsao/mi-roberta-classification")
|
15 |
|
16 |
# Streamlit app
|
17 |
st.title('Mental Illness Prediction')
|
@@ -19,14 +15,19 @@ st.title('Mental Illness Prediction')
|
|
19 |
# Input text area for user input
|
20 |
sentence = st.text_area("Enter the long sentence to predict your mental illness state:")
|
21 |
|
22 |
-
|
23 |
# Prediction button
|
24 |
if st.button('Predict'):
|
25 |
-
#
|
|
|
26 |
|
|
|
27 |
with torch.no_grad():
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
st.
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
|
3 |
import streamlit as st
|
4 |
|
5 |
# Set device (GPU if available, otherwise CPU)
|
6 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
|
8 |
+
# Load tokenizer and model
|
|
|
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained("mavinsao/mi-roberta-classification")
|
10 |
+
model = AutoModelForSequenceClassification.from_pretrained("mavinsao/mi-roberta-classification").to(device)
|
11 |
|
12 |
# Streamlit app
|
13 |
st.title('Mental Illness Prediction')
|
|
|
15 |
# Input text area for user input
|
16 |
sentence = st.text_area("Enter the long sentence to predict your mental illness state:")
|
17 |
|
|
|
18 |
# Prediction button
|
19 |
if st.button('Predict'):
|
20 |
+
# Tokenize the input sentence
|
21 |
+
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True).to(device)
|
22 |
|
23 |
+
# Forward pass
|
24 |
with torch.no_grad():
|
25 |
+
outputs = model(**inputs)
|
26 |
+
|
27 |
+
# Get predicted probabilities
|
28 |
+
probabilities = torch.sigmoid(outputs.logits).squeeze(dim=0)
|
29 |
|
30 |
+
# Get predicted labels with probability greater than 0.5
|
31 |
+
predicted_labels = [label for i, label in enumerate(tokenizer.labels) if probabilities[i] > 0.5]
|
32 |
|
33 |
+
st.write("Predicted labels:", predicted_labels)
|