change to model
Browse files
app.py
CHANGED
|
@@ -5,67 +5,20 @@ import json
|
|
| 5 |
import streamlit as st
|
| 6 |
|
| 7 |
# Set device (GPU if available, otherwise CPU)
|
| 8 |
-
device = torch.device("cpu")
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Create a common label map
|
| 15 |
common_label_map = {'ADHD': 0, 'Anxiety': 1, 'bipolar': 2, 'BPD': 3, 'depression': 4, 'OCD': 5, 'ptsd': 6, 'none': 7}
|
| 16 |
num_classes = 8
|
| 17 |
|
| 18 |
|
| 19 |
-
|
| 20 |
-
class MIRobertaClassifier(nn.Module):
|
| 21 |
-
def __init__(self, num_classes, dropout_prob=0.3):
|
| 22 |
-
super(MIRobertaClassifier, self).__init__()
|
| 23 |
-
self.roberta = RobertaModel.from_pretrained(model_path)
|
| 24 |
-
self.dropout = nn.Dropout(dropout_prob)
|
| 25 |
-
self.fc = nn.Linear(self.roberta.config.hidden_size, num_classes)
|
| 26 |
-
|
| 27 |
-
def forward(self, input_ids, attention_mask):
|
| 28 |
-
outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
|
| 29 |
-
last_hidden_state = outputs.last_hidden_state[:, 0, :]
|
| 30 |
-
x = self.dropout(last_hidden_state)
|
| 31 |
-
logits = self.fc(x)
|
| 32 |
-
return logits
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
# RoBERTa
|
| 36 |
-
class RobertaClassifier(nn.Module):
|
| 37 |
-
def __init__(self, num_classes, dropout_prob=0.3):
|
| 38 |
-
super(RobertaClassifier, self).__init__()
|
| 39 |
-
self.roberta = RobertaModel.from_pretrained('roberta-base')
|
| 40 |
-
self.dropout = nn.Dropout(dropout_prob)
|
| 41 |
-
self.fc = nn.Linear(self.roberta.config.hidden_size, num_classes)
|
| 42 |
-
|
| 43 |
-
def forward(self, input_ids, attention_mask):
|
| 44 |
-
outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
|
| 45 |
-
last_hidden_state = outputs.last_hidden_state[:, 0, :]
|
| 46 |
-
x = self.dropout(last_hidden_state)
|
| 47 |
-
logits = self.fc(x)
|
| 48 |
-
return logits
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
# Load the state dictionary into the model
|
| 52 |
-
roberta_loaded_model_state = torch.load('reddit_roberta_state.pth', map_location=device)
|
| 53 |
-
# Create an instance of your model
|
| 54 |
-
roberta_model = MIRobertaClassifier(num_classes=num_classes).to(device)
|
| 55 |
-
|
| 56 |
-
# Load the state dictionary into the model
|
| 57 |
-
roberta_model.load_state_dict(roberta_loaded_model_state['state_dict'])
|
| 58 |
-
|
| 59 |
-
# Load the state dictionary into the model
|
| 60 |
-
mi_loaded_model_state = torch.load('reddit_miroberta_state.pth', map_location=device)
|
| 61 |
-
# Create an instance of your model
|
| 62 |
-
mi_model = MIRobertaClassifier(num_classes=num_classes).to(device)
|
| 63 |
-
|
| 64 |
-
# Load the state dictionary into the model
|
| 65 |
-
mi_model.load_state_dict(mi_loaded_model_state['state_dict'])
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
def predict_label(sentence, tokenizer, model1, model2, device):
|
| 69 |
# Tokenize the sentence and create attention mask
|
| 70 |
tokenized_input = tokenizer(
|
| 71 |
sentence,
|
|
@@ -81,36 +34,27 @@ def predict_label(sentence, tokenizer, model1, model2, device):
|
|
| 81 |
attention_mask = tokenized_input['attention_mask'].to(device)
|
| 82 |
|
| 83 |
# Set the model to evaluation mode
|
| 84 |
-
|
| 85 |
-
roberta_model.eval()
|
| 86 |
|
| 87 |
# Make a prediction
|
| 88 |
with torch.no_grad():
|
| 89 |
-
|
| 90 |
-
outputs2 = roberta_model(input_ids, attention_mask)
|
| 91 |
-
|
| 92 |
-
# Ensemble predictions: averaging logits from both models
|
| 93 |
-
ensemble_outputs = (outputs1 + outputs2) / 2
|
| 94 |
-
|
| 95 |
-
# Apply softmax to get probabilities
|
| 96 |
-
probabilities = torch.softmax(ensemble_outputs, dim=1)[0].tolist()
|
| 97 |
|
| 98 |
-
#
|
| 99 |
-
|
|
|
|
|
|
|
| 100 |
|
| 101 |
-
#
|
| 102 |
-
|
| 103 |
-
for i, label in enumerate(class_names):
|
| 104 |
-
label_index = common_label_map[label]
|
| 105 |
-
label_scores[label] = probabilities[label_index]
|
| 106 |
|
| 107 |
-
#
|
| 108 |
-
|
| 109 |
|
| 110 |
-
#
|
| 111 |
-
|
| 112 |
|
| 113 |
-
return
|
| 114 |
|
| 115 |
|
| 116 |
# Streamlit app
|
|
@@ -122,5 +66,5 @@ sentence = st.text_area("Enter the long sentence to predict your mental illness
|
|
| 122 |
# Prediction button
|
| 123 |
if st.button('Predict'):
|
| 124 |
# Predict label
|
| 125 |
-
predicted_response =
|
| 126 |
st.json(predicted_response)
|
|
|
|
| 5 |
import streamlit as st
|
| 6 |
|
| 7 |
# Set device (GPU if available, otherwise CPU)
|
| 8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
|
| 10 |
+
# Load model directly
|
| 11 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 12 |
+
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained("mavinsao/mi-roberta-mental-illness")
|
| 14 |
+
model = AutoModelForSequenceClassification.from_pretrained("mavinsao/mi-roberta-mental-illness")
|
| 15 |
|
| 16 |
# Create a common label map
|
| 17 |
common_label_map = {'ADHD': 0, 'Anxiety': 1, 'bipolar': 2, 'BPD': 3, 'depression': 4, 'OCD': 5, 'ptsd': 6, 'none': 7}
|
| 18 |
num_classes = 8
|
| 19 |
|
| 20 |
|
| 21 |
+
def predict_labels(sentence, tokenizer, model, device, threshold=0.5, top_n=5):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
# Tokenize the sentence and create attention mask
|
| 23 |
tokenized_input = tokenizer(
|
| 24 |
sentence,
|
|
|
|
| 34 |
attention_mask = tokenized_input['attention_mask'].to(device)
|
| 35 |
|
| 36 |
# Set the model to evaluation mode
|
| 37 |
+
model.eval()
|
|
|
|
| 38 |
|
| 39 |
# Make a prediction
|
| 40 |
with torch.no_grad():
|
| 41 |
+
output = model(input_ids, attention_mask)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# Apply thresholding to the logits to obtain predicted labels
|
| 44 |
+
logits = output.logits
|
| 45 |
+
sigmoid_output = torch.sigmoid(logits.squeeze(dim=0))
|
| 46 |
+
indices_above_threshold = torch.arange(logits.shape[-1], device=device)[sigmoid_output > threshold]
|
| 47 |
|
| 48 |
+
# Sort the indices by their sigmoid values
|
| 49 |
+
sorted_indices = indices_above_threshold[torch.argsort(sigmoid_output[indices_above_threshold], descending=True)]
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
# Map the predicted label indices back to the original class labels using the common label map
|
| 52 |
+
predicted_labels_with_score = [{"label": list(common_label_map.keys())[index], "score": sigmoid_output[index].item()} for index in sorted_indices[:top_n]]
|
| 53 |
|
| 54 |
+
# Create a JSON object with labels, scores, and short forms
|
| 55 |
+
json_result = [{"label": entry["label"], "score": entry["score"]} for entry in predicted_labels_with_score]
|
| 56 |
|
| 57 |
+
return json.dumps(json_result, indent=4)
|
| 58 |
|
| 59 |
|
| 60 |
# Streamlit app
|
|
|
|
| 66 |
# Prediction button
|
| 67 |
if st.button('Predict'):
|
| 68 |
# Predict label
|
| 69 |
+
predicted_response = predict_labels(sentence, tokenizer, model, device)
|
| 70 |
st.json(predicted_response)
|