File size: 27,352 Bytes
69f2bad
8e5115d
 
 
 
 
 
 
69f2bad
7358182
1431767
 
 
7358182
1431767
 
e6fb807
 
7358182
 
e6fb807
8e5115d
7358182
e632d6b
 
7358182
8e5115d
7358182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431767
7358182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6fb807
7358182
e6fb807
7358182
e6fb807
7358182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6fb807
7358182
 
e6fb807
7358182
 
e6fb807
7358182
 
 
 
 
e6fb807
7358182
 
 
 
 
 
 
 
e6fb807
7358182
 
 
 
 
 
e6fb807
7358182
 
e6fb807
7358182
 
 
e6fb807
7358182
 
 
 
 
 
 
e6fb807
7358182
e6fb807
1431767
7358182
8e5115d
 
 
7358182
 
 
8e5115d
7358182
 
8e5115d
7358182
e632d6b
7358182
 
 
 
 
8e5115d
 
 
 
 
7358182
 
 
 
 
 
 
 
 
 
 
 
8e5115d
7358182
 
 
 
 
 
e6fb807
8e5115d
7358182
 
8e5115d
7358182
 
 
8e5115d
7358182
 
8e5115d
7358182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6fb807
7358182
 
 
e6fb807
7358182
 
 
e6fb807
7358182
 
 
 
 
 
 
 
 
e6fb807
7358182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431767
7358182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e632d6b
8e5115d
7358182
1431767
e632d6b
8e5115d
 
7358182
 
 
 
1431767
 
7358182
 
e6fb807
7358182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5115d
7358182
1431767
7358182
 
 
 
 
1431767
7358182
 
 
 
 
1431767
7358182
 
 
 
 
1431767
7358182
 
 
 
 
8e5115d
7358182
 
8e5115d
 
7358182
e632d6b
7358182
 
 
8e5115d
 
7358182
 
 
 
 
 
 
 
 
8e5115d
 
 
7358182
 
 
 
8e5115d
 
 
e6fb807
7358182
8e5115d
 
 
7358182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6fb807
7358182
 
 
 
 
e6fb807
7358182
 
8e5115d
7358182
 
 
 
 
 
8e5115d
 
7358182
 
 
 
 
 
 
 
 
 
8e5115d
7358182
8e5115d
 
7358182
 
 
 
8e5115d
 
 
7358182
8e5115d
 
7358182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5115d
7358182
8e5115d
 
7358182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5115d
7358182
 
8e5115d
7358182
8e5115d
7358182
8e5115d
 
1431767
8e5115d
7358182
 
8e5115d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
import gradio as gr
import torch
import os
import gc
import numpy as np
import tempfile
from typing import Optional, Tuple
import time

# ZeroGPU with H200 support
try:
    import spaces
    SPACES_AVAILABLE = True
    print("βœ… Spaces library loaded - H200 detected!")
except ImportError:
    SPACES_AVAILABLE = False
    class spaces:
        @staticmethod
        def GPU(duration=300):
            def decorator(func): return func
            return decorator

# Environment
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
IS_SPACES = os.environ.get("SPACE_ID") is not None
HAS_CUDA = torch.cuda.is_available()

print(f"πŸš€ H200 Environment: ZeroGPU={IS_ZERO_GPU}, Spaces={IS_SPACES}, CUDA={HAS_CUDA}")

# Premium models optimized for H200's massive memory
PREMIUM_MODELS = {
    "ltx": {
        "id": "Lightricks/LTX-Video",
        "name": "LTX-Video",
        "pipeline_class": "LTXVideoPipeline",
        "resolution_options": [(512, 512), (768, 768), (1024, 1024), (1280, 720), (1920, 1080)],
        "max_frames": 161,  # H200 can handle more frames
        "dtype": torch.bfloat16,
        "priority": 1,
        "description": "Lightricks' flagship model - professional quality"
    },
    "hunyuan": {
        "id": "tencent/HunyuanVideo", 
        "name": "HunyuanVideo",
        "pipeline_class": "HunyuanVideoPipeline",
        "resolution_options": [(512, 512), (768, 768), (1024, 1024), (1280, 720)],
        "max_frames": 129,  # Extended for H200
        "dtype": torch.bfloat16,
        "priority": 2,
        "description": "Tencent's advanced video model with superior motion"
    },
    "wan": {
        "id": "wangfuyun/AnimateLCM",
        "name": "AnimateLCM", 
        "pipeline_class": "DiffusionPipeline",
        "resolution_options": [(512, 512), (768, 768), (1024, 1024)],
        "max_frames": 64,
        "dtype": torch.float16,
        "priority": 3,
        "description": "Fast, high-quality animation model"
    },
    "cogvideo": {
        "id": "THUDM/CogVideoX-5b",
        "name": "CogVideoX-5B",
        "pipeline_class": "CogVideoXPipeline", 
        "resolution_options": [(720, 480), (1280, 720)],
        "max_frames": 49,
        "dtype": torch.bfloat16,
        "priority": 4,
        "description": "CogVideo's 5B parameter model"
    }
}

# Global variables
MODEL = None
MODEL_INFO = None
LOADING_ERROR = None

def get_gpu_memory():
    """Get H200 GPU memory info"""
    if HAS_CUDA:
        try:
            total_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
            allocated = torch.cuda.memory_allocated(0) / (1024**3)
            cached = torch.cuda.memory_reserved(0) / (1024**3)
            return total_memory, allocated, cached
        except:
            return 0, 0, 0
    return 0, 0, 0

def load_premium_model():
    """Load first available premium model with H200 optimizations"""
    global MODEL, MODEL_INFO, LOADING_ERROR
    
    if MODEL is not None:
        return True
    
    # Sort models by priority
    sorted_models = sorted(PREMIUM_MODELS.items(), key=lambda x: x[1]["priority"])
    
    for key, info in sorted_models:
        try:
            print(f"πŸ”„ Loading {info['name']} on H200...")
            total_mem, allocated, cached = get_gpu_memory()
            print(f"πŸ’Ύ GPU Memory: {total_mem:.1f}GB total, {allocated:.1f}GB allocated")
            
            from diffusers import DiffusionPipeline
            
            # Try specific pipeline class first
            try:
                if info["pipeline_class"] == "LTXVideoPipeline":
                    from diffusers import LTXVideoPipeline
                    pipe = LTXVideoPipeline.from_pretrained(
                        info["id"],
                        torch_dtype=info["dtype"],
                        use_safetensors=True,
                        variant="fp16"
                    )
                elif info["pipeline_class"] == "HunyuanVideoPipeline":
                    from diffusers import HunyuanVideoPipeline  
                    pipe = HunyuanVideoPipeline.from_pretrained(
                        info["id"],
                        torch_dtype=info["dtype"],
                        use_safetensors=True,
                        variant="fp16"
                    )
                elif info["pipeline_class"] == "CogVideoXPipeline":
                    from diffusers import CogVideoXPipeline
                    pipe = CogVideoXPipeline.from_pretrained(
                        info["id"],
                        torch_dtype=info["dtype"],
                        use_safetensors=True
                    )
                else:
                    # Generic DiffusionPipeline
                    pipe = DiffusionPipeline.from_pretrained(
                        info["id"],
                        torch_dtype=info["dtype"],
                        use_safetensors=True,
                        variant="fp16",
                        trust_remote_code=True
                    )
            except ImportError as e:
                print(f"⚠️ Specific pipeline not available: {e}")
                print("Trying generic DiffusionPipeline...")
                pipe = DiffusionPipeline.from_pretrained(
                    info["id"],
                    torch_dtype=info["dtype"],
                    use_safetensors=True,
                    variant="fp16",
                    trust_remote_code=True
                )
            
            # H200 optimizations - we have plenty of memory!
            if HAS_CUDA:
                pipe = pipe.to("cuda")
                print(f"πŸ“± Moved {info['name']} to H200 CUDA")
                
                # Enable all optimizations but keep model in VRAM
                if hasattr(pipe, 'enable_vae_slicing'):
                    pipe.enable_vae_slicing()
                if hasattr(pipe, 'enable_vae_tiling'):
                    pipe.enable_vae_tiling()
                if hasattr(pipe, 'enable_memory_efficient_attention'):
                    pipe.enable_memory_efficient_attention()
                # Don't use CPU offload on H200 - keep everything in GPU memory
                
                # Enable xformers if available for extra speed
                try:
                    pipe.enable_xformers_memory_efficient_attention()
                    print("πŸš€ XFormers acceleration enabled")
                except:
                    print("⚠️ XFormers not available")
            
            MODEL = pipe
            MODEL_INFO = info
            
            final_mem = torch.cuda.memory_allocated(0) / (1024**3)
            print(f"βœ… {info['name']} loaded successfully! Memory used: {final_mem:.1f}GB")
            return True
            
        except Exception as e:
            print(f"❌ Failed to load {info['name']}: {e}")
            # Clear memory before trying next model
            if HAS_CUDA:
                torch.cuda.empty_cache()
            gc.collect()
            continue
    
    LOADING_ERROR = "All premium models failed to load"
    return False

@spaces.GPU(duration=300) if SPACES_AVAILABLE else lambda x: x  # 5 minutes for H200
def generate_video(
    prompt: str,
    negative_prompt: str = "",
    num_frames: int = 49,
    resolution: str = "1024x1024",
    num_inference_steps: int = 30,
    guidance_scale: float = 7.5,
    seed: int = -1,
    fps: int = 8
) -> Tuple[Optional[str], str]:
    """Generate premium video with H200 power"""
    
    global MODEL, MODEL_INFO, LOADING_ERROR
    
    # Load model if needed
    if not load_premium_model():
        return None, f"❌ No premium models available: {LOADING_ERROR}"
    
    # Input validation
    if not prompt.strip():
        return None, "❌ Please enter a valid prompt."
    
    if len(prompt) > 1000:  # H200 can handle longer prompts
        return None, "❌ Prompt too long. Please keep it under 1000 characters."
    
    # Parse resolution
    try:
        width, height = map(int, resolution.split('x'))
    except:
        width, height = 1024, 1024
    
    # Validate parameters against model capabilities  
    max_frames = MODEL_INFO["max_frames"]
    num_frames = min(max(num_frames, 8), max_frames)
    
    # Check if resolution is supported
    if (width, height) not in MODEL_INFO["resolution_options"]:
        # Use best supported resolution
        best_res = MODEL_INFO["resolution_options"][-1]  # Highest resolution
        width, height = best_res
        print(f"⚠️ Adjusted resolution to {width}x{height}")
    
    try:
        # H200 memory management - we have tons of memory!
        start_memory = torch.cuda.memory_allocated(0) / (1024**3) if HAS_CUDA else 0
        
        # Set seed
        if seed == -1:
            seed = np.random.randint(0, 2**32 - 1)
        
        device = "cuda" if HAS_CUDA else "cpu"
        generator = torch.Generator(device=device).manual_seed(seed)
        
        print(f"🎬 H200 Generation: {MODEL_INFO['name']} - '{prompt[:70]}...'")
        print(f"πŸ“ {width}x{height}, {num_frames} frames, {num_inference_steps} steps")
        start_time = time.time()
        
        # Generate with H200's full power
        with torch.autocast(device, dtype=MODEL_INFO["dtype"]):
            generation_kwargs = {
                "prompt": prompt,
                "num_frames": num_frames,
                "height": height,
                "width": width,
                "num_inference_steps": num_inference_steps,
                "guidance_scale": guidance_scale,
                "generator": generator
            }
            
            # Add negative prompt if provided
            if negative_prompt.strip():
                generation_kwargs["negative_prompt"] = negative_prompt
            
            # Model-specific parameters
            if MODEL_INFO["name"] == "CogVideoX-5B":
                generation_kwargs["num_videos_per_prompt"] = 1
            
            # Generate with progress tracking
            print("πŸš€ Starting generation on H200...")
            result = MODEL(**generation_kwargs)
        
        end_time = time.time()
        generation_time = end_time - start_time
        
        # Extract video frames
        if hasattr(result, 'frames'):
            video_frames = result.frames[0]
        elif hasattr(result, 'videos'):
            video_frames = result.videos[0]
        else:
            return None, "❌ Could not extract video frames from model output"
        
        # Export with custom FPS
        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
            from diffusers.utils import export_to_video
            export_to_video(video_frames, tmp_file.name, fps=fps)
            video_path = tmp_file.name
        
        # Memory stats
        end_memory = torch.cuda.memory_allocated(0) / (1024**3) if HAS_CUDA else 0
        memory_used = end_memory - start_memory
        
        success_msg = f"""βœ… **H200 Premium Video Generated!**

πŸš€ **Model:** {MODEL_INFO['name']} 
πŸ“ **Prompt:** {prompt}
🎬 **Frames:** {num_frames} @ {fps} FPS
πŸ“ **Resolution:** {width}x{height}
βš™οΈ **Inference Steps:** {num_inference_steps}
🎯 **Guidance Scale:** {guidance_scale}
🎲 **Seed:** {seed}
⏱️ **Generation Time:** {generation_time:.1f}s
πŸ–₯️ **Device:** H200 CUDA
πŸ’Ύ **Memory Used:** {memory_used:.1f}GB
πŸŽ₯ **Video Length:** {num_frames/fps:.1f}s"""
        
        return video_path, success_msg
        
    except torch.cuda.OutOfMemoryError:
        # Should be rare on H200!
        torch.cuda.empty_cache()
        gc.collect()
        return None, "❌ GPU memory exceeded (rare on H200!). Try reducing parameters."
    
    except Exception as e:
        if HAS_CUDA:
            torch.cuda.empty_cache()
        gc.collect()
        return None, f"❌ Generation failed: {str(e)}"

def get_h200_status():
    """Get H200 specific status"""
    if not HAS_CUDA:
        return "❌ CUDA not available"
    
    try:
        total_mem, allocated, cached = get_gpu_memory()
        gpu_name = torch.cuda.get_device_name(0)
        
        model_status = "⏳ Model will load on first use"
        if MODEL is not None:
            model_status = f"βœ… {MODEL_INFO['name']} loaded and ready"
        elif LOADING_ERROR:
            model_status = f"❌ {LOADING_ERROR}"
        
        return f"""## πŸš€ H200 Status

**πŸ–₯️ Hardware:**
- GPU: {gpu_name}
- Total Memory: {total_mem:.1f} GB
- Allocated: {allocated:.1f} GB  
- Cached: {cached:.1f} GB
- Free: {total_mem - allocated:.1f} GB

**πŸ€– Model Status:**
{model_status}

**⚑ H200 Advantages:**
- 141GB HBM3 memory (3.5x more than A100)
- 4.8TB/s memory bandwidth
- Can handle larger models & longer videos
- Multiple high-res generations without swapping"""
        
    except Exception as e:
        return f"❌ Error getting H200 status: {e}"

def suggest_h200_settings():
    """Suggest optimal settings for H200"""
    if MODEL is None:
        return "Load a model first to get personalized recommendations"
    
    model_name = MODEL_INFO['name']
    max_frames = MODEL_INFO['max_frames']
    max_res = MODEL_INFO['resolution_options'][-1]
    
    return f"""## 🎯 H200 Optimized Settings for {model_name}

**πŸš€ Maximum Quality (Recommended):**
- Resolution: {max_res[0]}x{max_res[1]}
- Frames: {max_frames}
- Inference Steps: 50
- Expected Time: 3-5 minutes

**βš–οΈ Balanced (Fast & Good):**
- Resolution: 1024x1024
- Frames: {max_frames//2}
- Inference Steps: 30
- Expected Time: 1-2 minutes

**⚑ Speed Test:**
- Resolution: 512x512  
- Frames: 25
- Inference Steps: 20
- Expected Time: 30-60 seconds

**πŸ’‘ H200 Tips:**
- Use longer prompts - H200 can handle complexity
- Try higher inference steps (30-50) for maximum quality
- Experiment with longer videos (40+ frames)
- Multiple generations won't cause memory issues"""

# Create H200-optimized interface
with gr.Blocks(title="H200 Premium Video Generator", theme=gr.themes.Glass()) as demo:
    
    gr.Markdown("""
    # πŸš€ H200 Premium Video Generator
    
    **Powered by NVIDIA H200** β€’ **141GB Memory** β€’ **Premium Models Only**
    
    *LTX-Video β€’ HunyuanVideo β€’ CogVideoX-5B β€’ AnimateLCM*
    """)
    
    # H200 status bar
    with gr.Row():
        gr.Markdown("""
        <div style="text-align: center; padding: 10px; background: linear-gradient(45deg, #FF6B6B, #4ECDC4); border-radius: 10px; color: white; font-weight: bold;">
        πŸ”₯ H200 ACTIVE - MAXIMUM PERFORMANCE MODE πŸ”₯
        </div>
        """)
    
    with gr.Tab("πŸŽ₯ H200 Video Generation"):
        with gr.Row():
            with gr.Column(scale=1):
                prompt_input = gr.Textbox(
                    label="πŸ“ Detailed Video Prompt (H200 can handle complexity!)",
                    placeholder="A breathtaking aerial view of a majestic golden eagle soaring through dramatic mountain peaks during a spectacular sunrise, with volumetric lighting piercing through morning mist, cinematic composition with dynamic camera movement following the eagle's graceful flight path, professional cinematography with shallow depth of field and warm golden color grading, 8K quality with film grain texture...",
                    lines=5,
                    max_lines=8
                )
                
                negative_prompt_input = gr.Textbox(
                    label="🚫 Negative Prompt",
                    placeholder="blurry, low quality, distorted, pixelated, watermark, text, signature, amateur, static, boring, unnatural motion...",
                    lines=2
                )
                
                with gr.Accordion("πŸš€ H200 Advanced Settings", open=True):
                    with gr.Row():
                        num_frames = gr.Slider(
                            minimum=8,
                            maximum=161,  # H200 can handle more
                            value=49,
                            step=1,
                            label="🎬 Frames (H200 can handle long videos!)"
                        )
                        
                        fps = gr.Slider(
                            minimum=4,
                            maximum=30,
                            value=8,
                            step=1,
                            label="🎞️ FPS (frames per second)"
                        )
                    
                    with gr.Row():
                        resolution = gr.Dropdown(
                            choices=["512x512", "768x768", "1024x1024", "1280x720", "1920x1080"],
                            value="1024x1024",
                            label="πŸ“ Resolution (H200 loves high-res!)"
                        )
                        
                        num_steps = gr.Slider(
                            minimum=15,
                            maximum=100,  # H200 can handle more steps
                            value=30,
                            step=1,
                            label="βš™οΈ Inference Steps (more = better quality)"
                        )
                    
                    with gr.Row():
                        guidance_scale = gr.Slider(
                            minimum=1.0,
                            maximum=20.0,
                            value=7.5,
                            step=0.5,
                            label="🎯 Guidance Scale"
                        )
                        
                        seed = gr.Number(
                            label="🎲 Seed (-1 for random)",
                            value=-1,
                            precision=0
                        )
                
                generate_btn = gr.Button(
                    "πŸš€ Generate on H200", 
                    variant="primary", 
                    size="lg"
                )
                
                gr.Markdown("""
                **⏱️ H200 Generation:** 1-5 minutes depending on settings
                
                **πŸ”₯ H200 Power:**
                - 141GB memory = No limits!
                - Generate 1080p videos
                - 100+ frames possible  
                - 50+ inference steps for max quality
                """)
                
            with gr.Column(scale=1):
                video_output = gr.Video(
                    label="πŸŽ₯ H200 Generated Premium Video",
                    height=400
                )
                
                result_text = gr.Textbox(
                    label="πŸ“‹ H200 Generation Report",
                    lines=12,
                    show_copy_button=True
                )
        
        # Event handler
        generate_btn.click(
            fn=generate_video,
            inputs=[
                prompt_input, negative_prompt_input, num_frames,
                resolution, num_steps, guidance_scale, seed, fps
            ],
            outputs=[video_output, result_text]
        )
        
        # H200-optimized examples
        gr.Examples(
            examples=[
                [
                    "A majestic golden eagle soaring through misty mountain peaks at sunrise, cinematic aerial cinematography with dramatic volumetric lighting, professional color grading with warm golden tones, shallow depth of field, dynamic camera movement tracking the eagle's flight, 8K quality with film grain",
                    "blurry, low quality, pixelated, static, amateur, watermark, text",
                    49, "1024x1024", 35, 7.5, 42, 8
                ],
                [
                    "Powerful ocean waves crashing against dramatic coastal cliffs during a storm, slow motion macro cinematography capturing water droplets and spray, dynamic lighting with storm clouds, professional cinematography with high contrast and desaturated colors",
                    "calm, peaceful, low quality, distorted, pixelated, watermark",
                    65, "1280x720", 40, 8.0, 123, 12
                ],
                [
                    "A steaming artisanal coffee cup on rustic wooden table by rain-streaked window, cozy cafe atmosphere with warm ambient lighting, shallow depth of field bokeh background, steam rising elegantly, cinematic close-up with perfect exposure",
                    "cold, harsh lighting, plastic, fake, low quality, blurry, text",
                    33, "1024x1024", 30, 7.0, 456, 8
                ],
                [
                    "Cherry blossom petals falling like snow in traditional Japanese garden with wooden bridge over koi pond, peaceful zen atmosphere with soft natural lighting, time-lapse effect showing seasonal transition, cinematic wide shot with perfect composition",
                    "modern, urban, chaotic, low quality, distorted, artificial, watermark",
                    81, "1280x720", 45, 7.5, 789, 10
                ]
            ],
            inputs=[prompt_input, negative_prompt_input, num_frames, resolution, num_steps, guidance_scale, seed, fps]
        )
    
    with gr.Tab("πŸ’Ύ H200 Status"):
        with gr.Row():
            status_btn = gr.Button("πŸ” Check H200 Status", variant="secondary")
            settings_btn = gr.Button("🎯 Get Optimal Settings", variant="secondary")
            
        status_output = gr.Markdown()
        settings_output = gr.Markdown()
        
        status_btn.click(fn=get_h200_status, outputs=status_output)
        settings_btn.click(fn=suggest_h200_settings, outputs=settings_output)
        
        # Auto-load status
        demo.load(fn=get_h200_status, outputs=status_output)
    
    with gr.Tab("🎬 H200 Master Guide"):
        gr.Markdown("""
        ## πŸš€ H200 Video Generation Mastery
        
        ### πŸ’Ž Why H200 is Game-Changing:
        
        **πŸ”₯ Raw Power:**
        - **141GB HBM3 Memory** (vs 80GB A100)
        - **4.8TB/s Bandwidth** (vs 3.35TB/s A100)  
        - **67% More Memory** for bigger models & longer videos
        - **No Memory Swapping** = Consistent performance
        
        ### 🎯 H200-Optimized Strategies:
        
        **🎬 Long-Form Content (H200 Specialty):**
        - Frames: 80-161 (2-20 second videos)
        - Resolution: 1280x720 or 1024x1024
        - Steps: 40-50 for cinematic quality
        - Perfect for: Storytelling, commercials, art pieces
        
        **πŸ–ΌοΈ Ultra High-Res (H200 Advantage):**
        - Resolution: 1920x1080 (if model supports)
        - Frames: 25-49 (manageable length)
        - Steps: 30-40
        - Perfect for: Wallpapers, presentations, demos
        
        **⚑ Rapid Prototyping:**
        - Multiple quick generations to test ideas
        - 512x512, 25 frames, 20 steps
        - Iterate quickly, then scale up
        
        ### ✍️ Advanced Prompt Engineering for H200:
        
        **Complex Scene Composition:**
        ```
        [Main Subject] + [Detailed Action] + [Environment Description] + 
        [Camera Work] + [Lighting] + [Color Grading] + [Technical Quality]
        ```
        
        **Example Structure:**
        - **Subject:** "A majestic red dragon"
        - **Action:** "gracefully flying through ancient mountain peaks"  
        - **Environment:** "shrouded in mystical fog with ancient ruins visible below"
        - **Camera:** "cinematic aerial tracking shot with dynamic movement"
        - **Lighting:** "golden hour lighting with volumetric rays piercing the mist"
        - **Grading:** "warm color palette with high contrast and film grain"
        - **Quality:** "8K cinematography with shallow depth of field"
        
        ### 🎨 Style Modifiers for Premium Results:
        
        **Cinematic Styles:**
        - "Christopher Nolan cinematography"
        - "Blade Runner 2049 aesthetic"  
        - "Studio Ghibli animation style"
        - "BBC Planet Earth documentary style"
        - "Marvel movie action sequence"
        
        **Technical Quality:**
        - "8K RED camera footage"
        - "IMAX quality cinematography" 
        - "Zeiss lens bokeh"
        - "Professional color grading"
        - "Film grain texture overlay"
        
        ### πŸ”§ H200 Performance Optimization:
        
        **Memory Management:**
        - H200's 141GB means you rarely hit limits
        - Can run multiple models simultaneously
        - No need for CPU offloading
        - Keep all components in GPU memory
        
        **Speed Optimization:**
        - Use bfloat16 for modern models (LTX, HunyuanVideo)
        - Enable XFormers attention for 20-30% speedup
        - Batch operations when possible
        - H200's bandwidth handles large tensors efficiently
        
        **Quality Maximization:**
        - Push inference steps to 40-50
        - Use guidance scales 7-12 for detailed control
        - Experiment with longer sequences (80+ frames)
        - Try ultra-high resolutions (1080p+)
        
        ### πŸŽͺ Advanced Techniques:
        
        **Multi-Shot Sequences:**
        1. Generate wide establishing shot
        2. Generate medium character shot
        3. Generate close-up detail shot
        4. Combine in post-production
        
        **Style Consistency:**
        - Use same seed across generations
        - Maintain lighting keywords
        - Keep camera angle descriptions similar
        - Use consistent color palette terms
        
        **Temporal Coherence:**
        - Describe smooth motions
        - Avoid jump cuts in single prompts
        - Use transition words: "smoothly", "gradually", "continuously"
        - Specify motion speed: "slow motion", "time-lapse", "real-time"
        
        ### πŸ† H200 Best Practices:
        
        **DO:**
        βœ… Push the limits - H200 can handle complexity
        βœ… Use detailed, multi-sentence prompts
        βœ… Experiment with high frame counts
        βœ… Try maximum inference steps for quality
        βœ… Generate multiple variations quickly
        
        **DON'T:**
        ❌ Limit yourself to basic settings
        ❌ Worry about memory constraints  
        ❌ Skip negative prompts
        ❌ Use generic prompts
        ❌ Settle for low resolution
        
        ### 🎬 Genre-Specific Prompting:
        
        **Nature Documentary:**
        "BBC Planet Earth style, macro cinematography, natural lighting, wildlife behavior, David Attenborough quality"
        
        **Sci-Fi Epic:**
        "Blade Runner 2049 aesthetic, neon lighting, futuristic architecture, dramatic cinematography, cyberpunk atmosphere"
        
        **Fantasy Adventure:**  
        "Lord of the Rings cinematography, epic landscapes, mystical lighting, heroic composition, John Howe art style"
        
        **Commercial/Product:**
        "Apple commercial style, clean minimalist aesthetic, perfect lighting, premium quality, studio photography"
        
        Remember: H200's massive memory means you can be ambitious. Don't hold back! πŸš€
        """)

# Launch with H200 optimizations
if __name__ == "__main__":
    demo.queue(max_size=3)  # Smaller queue for premium H200 generations
    demo.launch(
        share=False,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        show_api=False
    )