Spaces:
Sleeping
Sleeping
File size: 27,352 Bytes
69f2bad 8e5115d 69f2bad 7358182 1431767 7358182 1431767 e6fb807 7358182 e6fb807 8e5115d 7358182 e632d6b 7358182 8e5115d 7358182 1431767 7358182 e6fb807 7358182 e6fb807 7358182 e6fb807 7358182 e6fb807 7358182 e6fb807 7358182 e6fb807 7358182 e6fb807 7358182 e6fb807 7358182 e6fb807 7358182 e6fb807 7358182 e6fb807 7358182 e6fb807 7358182 e6fb807 1431767 7358182 8e5115d 7358182 8e5115d 7358182 8e5115d 7358182 e632d6b 7358182 8e5115d 7358182 8e5115d 7358182 e6fb807 8e5115d 7358182 8e5115d 7358182 8e5115d 7358182 8e5115d 7358182 e6fb807 7358182 e6fb807 7358182 e6fb807 7358182 e6fb807 7358182 1431767 7358182 e632d6b 8e5115d 7358182 1431767 e632d6b 8e5115d 7358182 1431767 7358182 e6fb807 7358182 8e5115d 7358182 1431767 7358182 1431767 7358182 1431767 7358182 1431767 7358182 8e5115d 7358182 8e5115d 7358182 e632d6b 7358182 8e5115d 7358182 8e5115d 7358182 8e5115d e6fb807 7358182 8e5115d 7358182 e6fb807 7358182 e6fb807 7358182 8e5115d 7358182 8e5115d 7358182 8e5115d 7358182 8e5115d 7358182 8e5115d 7358182 8e5115d 7358182 8e5115d 7358182 8e5115d 7358182 8e5115d 7358182 8e5115d 7358182 8e5115d 7358182 8e5115d 1431767 8e5115d 7358182 8e5115d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
import gradio as gr
import torch
import os
import gc
import numpy as np
import tempfile
from typing import Optional, Tuple
import time
# ZeroGPU with H200 support
try:
import spaces
SPACES_AVAILABLE = True
print("β
Spaces library loaded - H200 detected!")
except ImportError:
SPACES_AVAILABLE = False
class spaces:
@staticmethod
def GPU(duration=300):
def decorator(func): return func
return decorator
# Environment
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
IS_SPACES = os.environ.get("SPACE_ID") is not None
HAS_CUDA = torch.cuda.is_available()
print(f"π H200 Environment: ZeroGPU={IS_ZERO_GPU}, Spaces={IS_SPACES}, CUDA={HAS_CUDA}")
# Premium models optimized for H200's massive memory
PREMIUM_MODELS = {
"ltx": {
"id": "Lightricks/LTX-Video",
"name": "LTX-Video",
"pipeline_class": "LTXVideoPipeline",
"resolution_options": [(512, 512), (768, 768), (1024, 1024), (1280, 720), (1920, 1080)],
"max_frames": 161, # H200 can handle more frames
"dtype": torch.bfloat16,
"priority": 1,
"description": "Lightricks' flagship model - professional quality"
},
"hunyuan": {
"id": "tencent/HunyuanVideo",
"name": "HunyuanVideo",
"pipeline_class": "HunyuanVideoPipeline",
"resolution_options": [(512, 512), (768, 768), (1024, 1024), (1280, 720)],
"max_frames": 129, # Extended for H200
"dtype": torch.bfloat16,
"priority": 2,
"description": "Tencent's advanced video model with superior motion"
},
"wan": {
"id": "wangfuyun/AnimateLCM",
"name": "AnimateLCM",
"pipeline_class": "DiffusionPipeline",
"resolution_options": [(512, 512), (768, 768), (1024, 1024)],
"max_frames": 64,
"dtype": torch.float16,
"priority": 3,
"description": "Fast, high-quality animation model"
},
"cogvideo": {
"id": "THUDM/CogVideoX-5b",
"name": "CogVideoX-5B",
"pipeline_class": "CogVideoXPipeline",
"resolution_options": [(720, 480), (1280, 720)],
"max_frames": 49,
"dtype": torch.bfloat16,
"priority": 4,
"description": "CogVideo's 5B parameter model"
}
}
# Global variables
MODEL = None
MODEL_INFO = None
LOADING_ERROR = None
def get_gpu_memory():
"""Get H200 GPU memory info"""
if HAS_CUDA:
try:
total_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
allocated = torch.cuda.memory_allocated(0) / (1024**3)
cached = torch.cuda.memory_reserved(0) / (1024**3)
return total_memory, allocated, cached
except:
return 0, 0, 0
return 0, 0, 0
def load_premium_model():
"""Load first available premium model with H200 optimizations"""
global MODEL, MODEL_INFO, LOADING_ERROR
if MODEL is not None:
return True
# Sort models by priority
sorted_models = sorted(PREMIUM_MODELS.items(), key=lambda x: x[1]["priority"])
for key, info in sorted_models:
try:
print(f"π Loading {info['name']} on H200...")
total_mem, allocated, cached = get_gpu_memory()
print(f"πΎ GPU Memory: {total_mem:.1f}GB total, {allocated:.1f}GB allocated")
from diffusers import DiffusionPipeline
# Try specific pipeline class first
try:
if info["pipeline_class"] == "LTXVideoPipeline":
from diffusers import LTXVideoPipeline
pipe = LTXVideoPipeline.from_pretrained(
info["id"],
torch_dtype=info["dtype"],
use_safetensors=True,
variant="fp16"
)
elif info["pipeline_class"] == "HunyuanVideoPipeline":
from diffusers import HunyuanVideoPipeline
pipe = HunyuanVideoPipeline.from_pretrained(
info["id"],
torch_dtype=info["dtype"],
use_safetensors=True,
variant="fp16"
)
elif info["pipeline_class"] == "CogVideoXPipeline":
from diffusers import CogVideoXPipeline
pipe = CogVideoXPipeline.from_pretrained(
info["id"],
torch_dtype=info["dtype"],
use_safetensors=True
)
else:
# Generic DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
info["id"],
torch_dtype=info["dtype"],
use_safetensors=True,
variant="fp16",
trust_remote_code=True
)
except ImportError as e:
print(f"β οΈ Specific pipeline not available: {e}")
print("Trying generic DiffusionPipeline...")
pipe = DiffusionPipeline.from_pretrained(
info["id"],
torch_dtype=info["dtype"],
use_safetensors=True,
variant="fp16",
trust_remote_code=True
)
# H200 optimizations - we have plenty of memory!
if HAS_CUDA:
pipe = pipe.to("cuda")
print(f"π± Moved {info['name']} to H200 CUDA")
# Enable all optimizations but keep model in VRAM
if hasattr(pipe, 'enable_vae_slicing'):
pipe.enable_vae_slicing()
if hasattr(pipe, 'enable_vae_tiling'):
pipe.enable_vae_tiling()
if hasattr(pipe, 'enable_memory_efficient_attention'):
pipe.enable_memory_efficient_attention()
# Don't use CPU offload on H200 - keep everything in GPU memory
# Enable xformers if available for extra speed
try:
pipe.enable_xformers_memory_efficient_attention()
print("π XFormers acceleration enabled")
except:
print("β οΈ XFormers not available")
MODEL = pipe
MODEL_INFO = info
final_mem = torch.cuda.memory_allocated(0) / (1024**3)
print(f"β
{info['name']} loaded successfully! Memory used: {final_mem:.1f}GB")
return True
except Exception as e:
print(f"β Failed to load {info['name']}: {e}")
# Clear memory before trying next model
if HAS_CUDA:
torch.cuda.empty_cache()
gc.collect()
continue
LOADING_ERROR = "All premium models failed to load"
return False
@spaces.GPU(duration=300) if SPACES_AVAILABLE else lambda x: x # 5 minutes for H200
def generate_video(
prompt: str,
negative_prompt: str = "",
num_frames: int = 49,
resolution: str = "1024x1024",
num_inference_steps: int = 30,
guidance_scale: float = 7.5,
seed: int = -1,
fps: int = 8
) -> Tuple[Optional[str], str]:
"""Generate premium video with H200 power"""
global MODEL, MODEL_INFO, LOADING_ERROR
# Load model if needed
if not load_premium_model():
return None, f"β No premium models available: {LOADING_ERROR}"
# Input validation
if not prompt.strip():
return None, "β Please enter a valid prompt."
if len(prompt) > 1000: # H200 can handle longer prompts
return None, "β Prompt too long. Please keep it under 1000 characters."
# Parse resolution
try:
width, height = map(int, resolution.split('x'))
except:
width, height = 1024, 1024
# Validate parameters against model capabilities
max_frames = MODEL_INFO["max_frames"]
num_frames = min(max(num_frames, 8), max_frames)
# Check if resolution is supported
if (width, height) not in MODEL_INFO["resolution_options"]:
# Use best supported resolution
best_res = MODEL_INFO["resolution_options"][-1] # Highest resolution
width, height = best_res
print(f"β οΈ Adjusted resolution to {width}x{height}")
try:
# H200 memory management - we have tons of memory!
start_memory = torch.cuda.memory_allocated(0) / (1024**3) if HAS_CUDA else 0
# Set seed
if seed == -1:
seed = np.random.randint(0, 2**32 - 1)
device = "cuda" if HAS_CUDA else "cpu"
generator = torch.Generator(device=device).manual_seed(seed)
print(f"π¬ H200 Generation: {MODEL_INFO['name']} - '{prompt[:70]}...'")
print(f"π {width}x{height}, {num_frames} frames, {num_inference_steps} steps")
start_time = time.time()
# Generate with H200's full power
with torch.autocast(device, dtype=MODEL_INFO["dtype"]):
generation_kwargs = {
"prompt": prompt,
"num_frames": num_frames,
"height": height,
"width": width,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
"generator": generator
}
# Add negative prompt if provided
if negative_prompt.strip():
generation_kwargs["negative_prompt"] = negative_prompt
# Model-specific parameters
if MODEL_INFO["name"] == "CogVideoX-5B":
generation_kwargs["num_videos_per_prompt"] = 1
# Generate with progress tracking
print("π Starting generation on H200...")
result = MODEL(**generation_kwargs)
end_time = time.time()
generation_time = end_time - start_time
# Extract video frames
if hasattr(result, 'frames'):
video_frames = result.frames[0]
elif hasattr(result, 'videos'):
video_frames = result.videos[0]
else:
return None, "β Could not extract video frames from model output"
# Export with custom FPS
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
from diffusers.utils import export_to_video
export_to_video(video_frames, tmp_file.name, fps=fps)
video_path = tmp_file.name
# Memory stats
end_memory = torch.cuda.memory_allocated(0) / (1024**3) if HAS_CUDA else 0
memory_used = end_memory - start_memory
success_msg = f"""β
**H200 Premium Video Generated!**
π **Model:** {MODEL_INFO['name']}
π **Prompt:** {prompt}
π¬ **Frames:** {num_frames} @ {fps} FPS
π **Resolution:** {width}x{height}
βοΈ **Inference Steps:** {num_inference_steps}
π― **Guidance Scale:** {guidance_scale}
π² **Seed:** {seed}
β±οΈ **Generation Time:** {generation_time:.1f}s
π₯οΈ **Device:** H200 CUDA
πΎ **Memory Used:** {memory_used:.1f}GB
π₯ **Video Length:** {num_frames/fps:.1f}s"""
return video_path, success_msg
except torch.cuda.OutOfMemoryError:
# Should be rare on H200!
torch.cuda.empty_cache()
gc.collect()
return None, "β GPU memory exceeded (rare on H200!). Try reducing parameters."
except Exception as e:
if HAS_CUDA:
torch.cuda.empty_cache()
gc.collect()
return None, f"β Generation failed: {str(e)}"
def get_h200_status():
"""Get H200 specific status"""
if not HAS_CUDA:
return "β CUDA not available"
try:
total_mem, allocated, cached = get_gpu_memory()
gpu_name = torch.cuda.get_device_name(0)
model_status = "β³ Model will load on first use"
if MODEL is not None:
model_status = f"β
{MODEL_INFO['name']} loaded and ready"
elif LOADING_ERROR:
model_status = f"β {LOADING_ERROR}"
return f"""## π H200 Status
**π₯οΈ Hardware:**
- GPU: {gpu_name}
- Total Memory: {total_mem:.1f} GB
- Allocated: {allocated:.1f} GB
- Cached: {cached:.1f} GB
- Free: {total_mem - allocated:.1f} GB
**π€ Model Status:**
{model_status}
**β‘ H200 Advantages:**
- 141GB HBM3 memory (3.5x more than A100)
- 4.8TB/s memory bandwidth
- Can handle larger models & longer videos
- Multiple high-res generations without swapping"""
except Exception as e:
return f"β Error getting H200 status: {e}"
def suggest_h200_settings():
"""Suggest optimal settings for H200"""
if MODEL is None:
return "Load a model first to get personalized recommendations"
model_name = MODEL_INFO['name']
max_frames = MODEL_INFO['max_frames']
max_res = MODEL_INFO['resolution_options'][-1]
return f"""## π― H200 Optimized Settings for {model_name}
**π Maximum Quality (Recommended):**
- Resolution: {max_res[0]}x{max_res[1]}
- Frames: {max_frames}
- Inference Steps: 50
- Expected Time: 3-5 minutes
**βοΈ Balanced (Fast & Good):**
- Resolution: 1024x1024
- Frames: {max_frames//2}
- Inference Steps: 30
- Expected Time: 1-2 minutes
**β‘ Speed Test:**
- Resolution: 512x512
- Frames: 25
- Inference Steps: 20
- Expected Time: 30-60 seconds
**π‘ H200 Tips:**
- Use longer prompts - H200 can handle complexity
- Try higher inference steps (30-50) for maximum quality
- Experiment with longer videos (40+ frames)
- Multiple generations won't cause memory issues"""
# Create H200-optimized interface
with gr.Blocks(title="H200 Premium Video Generator", theme=gr.themes.Glass()) as demo:
gr.Markdown("""
# π H200 Premium Video Generator
**Powered by NVIDIA H200** β’ **141GB Memory** β’ **Premium Models Only**
*LTX-Video β’ HunyuanVideo β’ CogVideoX-5B β’ AnimateLCM*
""")
# H200 status bar
with gr.Row():
gr.Markdown("""
<div style="text-align: center; padding: 10px; background: linear-gradient(45deg, #FF6B6B, #4ECDC4); border-radius: 10px; color: white; font-weight: bold;">
π₯ H200 ACTIVE - MAXIMUM PERFORMANCE MODE π₯
</div>
""")
with gr.Tab("π₯ H200 Video Generation"):
with gr.Row():
with gr.Column(scale=1):
prompt_input = gr.Textbox(
label="π Detailed Video Prompt (H200 can handle complexity!)",
placeholder="A breathtaking aerial view of a majestic golden eagle soaring through dramatic mountain peaks during a spectacular sunrise, with volumetric lighting piercing through morning mist, cinematic composition with dynamic camera movement following the eagle's graceful flight path, professional cinematography with shallow depth of field and warm golden color grading, 8K quality with film grain texture...",
lines=5,
max_lines=8
)
negative_prompt_input = gr.Textbox(
label="π« Negative Prompt",
placeholder="blurry, low quality, distorted, pixelated, watermark, text, signature, amateur, static, boring, unnatural motion...",
lines=2
)
with gr.Accordion("π H200 Advanced Settings", open=True):
with gr.Row():
num_frames = gr.Slider(
minimum=8,
maximum=161, # H200 can handle more
value=49,
step=1,
label="π¬ Frames (H200 can handle long videos!)"
)
fps = gr.Slider(
minimum=4,
maximum=30,
value=8,
step=1,
label="ποΈ FPS (frames per second)"
)
with gr.Row():
resolution = gr.Dropdown(
choices=["512x512", "768x768", "1024x1024", "1280x720", "1920x1080"],
value="1024x1024",
label="π Resolution (H200 loves high-res!)"
)
num_steps = gr.Slider(
minimum=15,
maximum=100, # H200 can handle more steps
value=30,
step=1,
label="βοΈ Inference Steps (more = better quality)"
)
with gr.Row():
guidance_scale = gr.Slider(
minimum=1.0,
maximum=20.0,
value=7.5,
step=0.5,
label="π― Guidance Scale"
)
seed = gr.Number(
label="π² Seed (-1 for random)",
value=-1,
precision=0
)
generate_btn = gr.Button(
"π Generate on H200",
variant="primary",
size="lg"
)
gr.Markdown("""
**β±οΈ H200 Generation:** 1-5 minutes depending on settings
**π₯ H200 Power:**
- 141GB memory = No limits!
- Generate 1080p videos
- 100+ frames possible
- 50+ inference steps for max quality
""")
with gr.Column(scale=1):
video_output = gr.Video(
label="π₯ H200 Generated Premium Video",
height=400
)
result_text = gr.Textbox(
label="π H200 Generation Report",
lines=12,
show_copy_button=True
)
# Event handler
generate_btn.click(
fn=generate_video,
inputs=[
prompt_input, negative_prompt_input, num_frames,
resolution, num_steps, guidance_scale, seed, fps
],
outputs=[video_output, result_text]
)
# H200-optimized examples
gr.Examples(
examples=[
[
"A majestic golden eagle soaring through misty mountain peaks at sunrise, cinematic aerial cinematography with dramatic volumetric lighting, professional color grading with warm golden tones, shallow depth of field, dynamic camera movement tracking the eagle's flight, 8K quality with film grain",
"blurry, low quality, pixelated, static, amateur, watermark, text",
49, "1024x1024", 35, 7.5, 42, 8
],
[
"Powerful ocean waves crashing against dramatic coastal cliffs during a storm, slow motion macro cinematography capturing water droplets and spray, dynamic lighting with storm clouds, professional cinematography with high contrast and desaturated colors",
"calm, peaceful, low quality, distorted, pixelated, watermark",
65, "1280x720", 40, 8.0, 123, 12
],
[
"A steaming artisanal coffee cup on rustic wooden table by rain-streaked window, cozy cafe atmosphere with warm ambient lighting, shallow depth of field bokeh background, steam rising elegantly, cinematic close-up with perfect exposure",
"cold, harsh lighting, plastic, fake, low quality, blurry, text",
33, "1024x1024", 30, 7.0, 456, 8
],
[
"Cherry blossom petals falling like snow in traditional Japanese garden with wooden bridge over koi pond, peaceful zen atmosphere with soft natural lighting, time-lapse effect showing seasonal transition, cinematic wide shot with perfect composition",
"modern, urban, chaotic, low quality, distorted, artificial, watermark",
81, "1280x720", 45, 7.5, 789, 10
]
],
inputs=[prompt_input, negative_prompt_input, num_frames, resolution, num_steps, guidance_scale, seed, fps]
)
with gr.Tab("πΎ H200 Status"):
with gr.Row():
status_btn = gr.Button("π Check H200 Status", variant="secondary")
settings_btn = gr.Button("π― Get Optimal Settings", variant="secondary")
status_output = gr.Markdown()
settings_output = gr.Markdown()
status_btn.click(fn=get_h200_status, outputs=status_output)
settings_btn.click(fn=suggest_h200_settings, outputs=settings_output)
# Auto-load status
demo.load(fn=get_h200_status, outputs=status_output)
with gr.Tab("π¬ H200 Master Guide"):
gr.Markdown("""
## π H200 Video Generation Mastery
### π Why H200 is Game-Changing:
**π₯ Raw Power:**
- **141GB HBM3 Memory** (vs 80GB A100)
- **4.8TB/s Bandwidth** (vs 3.35TB/s A100)
- **67% More Memory** for bigger models & longer videos
- **No Memory Swapping** = Consistent performance
### π― H200-Optimized Strategies:
**π¬ Long-Form Content (H200 Specialty):**
- Frames: 80-161 (2-20 second videos)
- Resolution: 1280x720 or 1024x1024
- Steps: 40-50 for cinematic quality
- Perfect for: Storytelling, commercials, art pieces
**πΌοΈ Ultra High-Res (H200 Advantage):**
- Resolution: 1920x1080 (if model supports)
- Frames: 25-49 (manageable length)
- Steps: 30-40
- Perfect for: Wallpapers, presentations, demos
**β‘ Rapid Prototyping:**
- Multiple quick generations to test ideas
- 512x512, 25 frames, 20 steps
- Iterate quickly, then scale up
### βοΈ Advanced Prompt Engineering for H200:
**Complex Scene Composition:**
```
[Main Subject] + [Detailed Action] + [Environment Description] +
[Camera Work] + [Lighting] + [Color Grading] + [Technical Quality]
```
**Example Structure:**
- **Subject:** "A majestic red dragon"
- **Action:** "gracefully flying through ancient mountain peaks"
- **Environment:** "shrouded in mystical fog with ancient ruins visible below"
- **Camera:** "cinematic aerial tracking shot with dynamic movement"
- **Lighting:** "golden hour lighting with volumetric rays piercing the mist"
- **Grading:** "warm color palette with high contrast and film grain"
- **Quality:** "8K cinematography with shallow depth of field"
### π¨ Style Modifiers for Premium Results:
**Cinematic Styles:**
- "Christopher Nolan cinematography"
- "Blade Runner 2049 aesthetic"
- "Studio Ghibli animation style"
- "BBC Planet Earth documentary style"
- "Marvel movie action sequence"
**Technical Quality:**
- "8K RED camera footage"
- "IMAX quality cinematography"
- "Zeiss lens bokeh"
- "Professional color grading"
- "Film grain texture overlay"
### π§ H200 Performance Optimization:
**Memory Management:**
- H200's 141GB means you rarely hit limits
- Can run multiple models simultaneously
- No need for CPU offloading
- Keep all components in GPU memory
**Speed Optimization:**
- Use bfloat16 for modern models (LTX, HunyuanVideo)
- Enable XFormers attention for 20-30% speedup
- Batch operations when possible
- H200's bandwidth handles large tensors efficiently
**Quality Maximization:**
- Push inference steps to 40-50
- Use guidance scales 7-12 for detailed control
- Experiment with longer sequences (80+ frames)
- Try ultra-high resolutions (1080p+)
### πͺ Advanced Techniques:
**Multi-Shot Sequences:**
1. Generate wide establishing shot
2. Generate medium character shot
3. Generate close-up detail shot
4. Combine in post-production
**Style Consistency:**
- Use same seed across generations
- Maintain lighting keywords
- Keep camera angle descriptions similar
- Use consistent color palette terms
**Temporal Coherence:**
- Describe smooth motions
- Avoid jump cuts in single prompts
- Use transition words: "smoothly", "gradually", "continuously"
- Specify motion speed: "slow motion", "time-lapse", "real-time"
### π H200 Best Practices:
**DO:**
β
Push the limits - H200 can handle complexity
β
Use detailed, multi-sentence prompts
β
Experiment with high frame counts
β
Try maximum inference steps for quality
β
Generate multiple variations quickly
**DON'T:**
β Limit yourself to basic settings
β Worry about memory constraints
β Skip negative prompts
β Use generic prompts
β Settle for low resolution
### π¬ Genre-Specific Prompting:
**Nature Documentary:**
"BBC Planet Earth style, macro cinematography, natural lighting, wildlife behavior, David Attenborough quality"
**Sci-Fi Epic:**
"Blade Runner 2049 aesthetic, neon lighting, futuristic architecture, dramatic cinematography, cyberpunk atmosphere"
**Fantasy Adventure:**
"Lord of the Rings cinematography, epic landscapes, mystical lighting, heroic composition, John Howe art style"
**Commercial/Product:**
"Apple commercial style, clean minimalist aesthetic, perfect lighting, premium quality, studio photography"
Remember: H200's massive memory means you can be ambitious. Don't hold back! π
""")
# Launch with H200 optimizations
if __name__ == "__main__":
demo.queue(max_size=3) # Smaller queue for premium H200 generations
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True,
show_api=False
) |